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Abstract
Information retrieval technique assists us to extract information from a huge
amount of information sources. Web search engine is a typically commercial
system implementing information retrieval technique and receiving increasing
popularity with larger amount of searching demands nowadays.

Users’ requirements on web search could be quite various. They may search
for entities like music, people, locations, products, etc, or verticals like “shop-
ping”, “news”, “images”, etc. All these entities or verticals could be placed in
multiple documents and possibly in additional sources. As a result, when infor-
mation retrieval is searching for objects associated with multiple documents, we
need to “fuse” information from multiple documents. Normally, there are two
ways to fuse documents, one strategy is “early” fusion, where a term-based rep-
resentation is built for each object (e.g., entity or vertical). The other strategy
is “late” fusion, where firstly relevant documents are retrieved, then their scores
are combined. In this project, two general fusion strategies, which are object-
centric model and document-centric model respectively, will be introduced and
implemented across federated search and expert search.

Federated search is a search task for searching multiple text collections simul-
taneously. Queries are submitted to a subset of collections that are most likely
to return relevant answers. Fusion-based methods are used for ranking these
collections by similarity between query and collection. Expert search is a task
for locating expertise with the associated documents, topics, etc. An expert’s
knowledge can be modeled based on the associated documents, or modeling top-
ics enables to find the documents. In this project, the literature on federated
search, expert search and blog distillation tasks and their experiment data sets
will be introduced, of which the last one is for further experiment.

To evaluate the performance of two fusion-based methods in different tasks,
comparison and analysis are carried out both between fusion methods and prob-
ability estimation methods. The effectiveness and efficiency of search results are
the most concerned evaluation factors. Finally, conclusion is drawn based on
the performances of object-centric and document-centric models.

Keywords: Fusion, Information retrieval, Federated search, Expert search
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Chapter 1

Introduction

1.1 Background

Books in the library are labeled with particular marks. The librarians place
and settle the books by these labels. Nowadays, librarians and readers can
use the Books Management System to store or find books with book content
indexed or recorded. Information retrieval origins from abstract indexing and
article reference for books, which became the core services in the library last
century. In a broad sense, information retrieval involves two processes, which
are arranging and storing information and seeking the related information user
needed separately. When users input some query, information retrieval systems,
according to the query, output the matched information.

There are various information retrieval systems implemented in different
fields. Among these systems, web search engines are currently the most popular
ones. In the information explosion era, Internet search becomes one of the most
popular activities on the web [45]. Majority of Internet searchers use search
engines to seek information. Google claims that the number of queries per day
has grown to hundreds of millions since the 21st century. As a result, with the
rapid demands of information query, information retrieval systems should keep
being polished to meet the increasing information needs from users.

In information retrieval system, the high-level task is to match information
needs and information objects. The information need is commonly expressed
as a keyword query. Information objects are often documents, but they could
also be entities, blogs, specific verticals, etc. In a search task, there are multiple
issues involved: how to represent the objects, how to rank suitable objects for
searching, how to merge the results returned from brokers, etc. In this project,
only the issue of the way to rank suitable objects for searching is under research.
Usually, the way to rank all the related objects can be achieved by calculating
the similarities between user query and objects.
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1.2 Fusion-based Information Retrieval

When querying on web search engines, users’ requirements could be quite var-
ious. They may search for entities like music, people, locations, products, etc,
or verticals like “shopping”, “news”, “images”, etc. Vertical search is different
from general web search, focusing on a specific segment of online content with
only relevant web pages indexed. All these entities or verticals could be placed
in multiple documents and possibly in additional sources. As a result, when
searching for objects associated with multiple documents, we need to “fuse”
information from these documents or even additional sources.

Query

Object 1

Object 2

Object 3

Document

Document

Document

Document

Document

Document

Document

Late Fusion

Query

Object 1

Object 2

Object 3

Document

Document

Document

Document

Document

Document

Document

Early Fusion

 

Figure 1.2.1: Graphical illustration of early fusion and late fusion

Fusion in information retrieval field means that the objects we want to re-
trieve are not directly represented, thus all sources should be taken into con-
sideration. The way to consider all the document collections is called fusion.
Normally, there are two ways to fuse documents, one strategy is “early” fusion,
where a term-based representation is built for each object (e.g., entity or ver-
tical). The other strategy is “late” fusion, where first relevant documents are
retrieved, then their scores are combined. Figure 1.2.1 shows the graphical illus-
tration of these two fusion methods. In this figure, documents are connected to
objects. One object usually connects to dozens of documents, and the relation-
ship between the object and documents is called document-object association.
Actually, documents associated with the same object means they are stored in
the same places or related to a similar theme. Fusion takes more objects into
consideration for queries. After fusion, the most relevant objects will be ranked
for query, which is the aim of fusion strategy for a higher query efficiency. In this
project, we are about to compare two general fusion strategies across a number
of different search tasks. In specific, the project involves the implementations
of the two fusion strategies in a language modeling framework and experiments
with large-scale test collections.
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1.2.1 Research Questions

The research questions of this project are listed as followed.

• RQ1: When fusion is needed for information retrieval, which fusion method
between early fusion and late fusion is better?

• RQ2: When estimating document-collection associations, diverse methods
could be used. Among these methods, which estimation method performs
the best?

In this project, the listed questions will be answered empirically.

1.2.2 Use-cases

To compare two general fusion strategies, different use-cases, which are federated
search, expert search and blog distillation respectively, are researched, and the
former two are implemented in the project. The use-case list is as following.

Federated Search Federated search is a federated information retrieval task,
which fuses or federates different data collections. Different collections
offering different retrieval results, federated search turns to different col-
lections simultaneously and merges the results into a single retrieval list.
To explore the performance of fedeated search, we take TREC Federated
Web Search (FedWeb) as test collection. FedWeb is a test collection used
for simulating research in fields related to federated search. The FedWeb
shares great popularity because its data are from real web search engines,
including YouTube, Lindedin Blog, Wikepedia, etc. The object in Fed-
Web is search engine and document is snippets. The document-object
association is obtained by extracting the snippet identifications retrieved
for sampled queries by certain search engines.

Expert Search As a branch of information retrieval, expert search deals with
the person targeting problem. Being able to offer professional assistance,
expert search should find the experts accurately. To make the expert
retrieval more accurate, different texture collections including specific in-
formation like links or e-mail address are mined and selected for a com-
prehensive knowledge on experts. Expert search selects the CSIRO En-
terprise Research Collection (CERC), which is an enterprise search test
collection, crawled from the website of a large organization. In CERC,
object is expert. The document-object association is given in the file of
“csiro assoc.list”.

Blog Distillation Blogs are extraordinary productions for individual expres-
sion. The theme of blogs could be emotional or technical focused. Blog
distillation treats blog as a collection of postings, which could be the blog
content or comment, for an excellent blog distinction. The blog search test
collection is also created with real blogs from the Internet called “Blog06”.

5



Here, object is blog and document is posting. The document-object as-
sociation can be obtained by analyzing the relationship between blog and
postings.

The system models of fusion strategies are shown in figure 1.2.1. Obviously,
searches are divided by fusion methods. For a comprehensive model understand-
ing, we take federated search as an example. Information is stored in the type
of document. A document collection may have a collecting theme or be stored
a special place. The aim of fusion strategies is to explore all the collections
and determine the most relevant ones. If the input query is directly sent to
document collections, this method is called early fusion. Early fusion calculates
the similarity between the query and the documents included in that collection.
Oppositely, if the query is sent to all documents with collection ignored in first
step, the approach is late fusion. Late fusion method firstly calculates the sim-
ilarities between query and all documents, and determines the query-collection
similarity by document-collection association. The other two cases are similar.

1.3 Contributions

The contributions of this thesis are as follows.

1. Classification of federated search, expert search and blog distillation ap-
proaches from the literature into early and late fusion methods.

2. Formalization of early fusion (object-centric model) and late fusion (document-
centric model) in a language modeling framework.

3. Implementation of two fusion strategies with two different methods for
estimating document-object associations.

4. Experimental evaluation and comparison of the two fusion strategies on
the federated search and expert search tasks, followed by a thorough anal-
ysis of the results.

1.4 Outline

This section, a road map is provided for the remaining chapters. In Chapter
2, the information retrieval tasks and fusion-based retrieval models classified
by use case are presented. The theories of two fusion strategies implemented
in this projected will be given in Chapter 3. A comprehensive introduction on
federated search and the test collections are given in Section 4.1. Similarly, the
methodologies and simulating collections of expert search and blog distillation
are presented in Section 4.2 and Section 4.3 respectively. Chapter 5 will in-
troduce the experiment results and analysis. Lastly, a conclusion about this
project and future work will be given.
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Chapter 2

Related Work

In this chapter, the tasks involved in information retrieval will be introduced in
specific. Also, methods on federated search, expert search and blog distillation
will be divided into early fusion and late fusion strategies separately.

2.1 Overview of Information Retrieval (IR)

Salton inferred in 1968 [43] that “Information retrieval is a field concerned with
the structure, analysis, organization, storage, searching, and retrieval of infor-
mation”. Normally, databases may be used for searching with structured data
storage. We may also search some relevant information with text available when
web search engine is used for targeting textual web pages. To determine the
relevance between the information need and the text, web search engines com-
pare the user query with the text to evaluate whether they match using retrieval
models. Of course, resources storing information could be various. They may
presented in the format of text, video, documents, etc. The applications of
information retrieval could be web search, vertical search, entity search, etc.
To implement the information retrieval applications, several issues are involved,
that are presenting the information needs, presenting the text resources, cal-
culating the relevance between information needs and documents, ranking the
documents by relevance, evaluating the retrieval results, etc. Actually, these
tasks are all under research in information retrieval fields. Later, these tasks
will be introduced in specific.

2.1.1 Information Needs Presentation

Almost everybody has the experience to use search engines like Google for some
queries. Normally, we would input some keywords to describe our information
needs. From the side of search engines, they provide the interface to accept the
query and transform it into index terms. The statistics on the query, which
means that for each query, we would count the frequency of each term in the

7



oslo stavanger university course sports team teacher
D1 3 0 5 0 2 1 0
D1 0 7 0 2 1 0 0
D2 0 0 1 1 1 0 2
D3 0 1 0 1 1 2 1

Table 2.1: Term vector example

query, could be used for the purpose of ranking results. Sometimes, only using
keywords is not enough to represent the information needs. In this condition, the
query refinement techniques like query expansion, query suggestion or relevant
feedback could be used for a better understanding of user needs. For example,
the interface may firstly do the spelling checking or offer some alternative de-
scriptions for the initial query. To present the output, search engines are always
presenting the ranked list of relevant documents with document descriptions to
the users. Actually, the interaction between engine and user and the document
context are both important to get the user needs.

2.1.2 Document Presentation

With the knowledge of information needs, search engine ranks the relevant doc-
uments among its acquired documents. Search engine can use crawler to acquire
different sorts of documents from website, enterprise or following links included
in the acquired documents. To output relevant documents on time, all docu-
ments are well stored in some format like HTML, XML, etc. With multiple
language involved in the text, encoding for different language is used. To store
different kinds of data for a good access, many works could be done. For struc-
tured data, they are stored in the format of tables with attributes for description.
But documents always contain complex language text, which can be regarded
as bags of words. The descriptive language may be ambiguous or contain noisy.
To get a clear understanding of the text, we should represent these documents
in proper formats and remove the irrelevant contents. Documents can be repre-
sented as term vectors. Each document is a vector and each term is a component
of the vector. The table 2.1 is an example of term vectors with four documents
represented. Here D is short for document. In this table, each row corresponds
to a document. The numbers reflect the term statistics.

Pre-processing is needed when the original data source include much noisy
data. The process of separating each term or word from a document is called
tokenization. Words like a, the, etc, which are called stopwords, could be re-
moved for a tight evaluation between query and documents. Words changing
with tense and person should be changed back, which is called stemming. Some
documents include links. The links could be well analyzed because some links
might well represent the content of documents or have great relevance to a
document. After the pre-processing for the acquired documents, index is to

8



there 1 are 1 many 1 different 1
shapes 1 for 1 dog 1,3 tail 1,2,3

the 2 is 2 traditionally 2 docked 2
to 2 avoid 2 injuries 2 in 3

some 3 breeds 3 puppies 3 can 3
be 3 born 3 with 3 a 3

short 3 or 3 no 3 at 3
all 3

Table 2.2: Simple inverted index for dog sentences

be created for query. Index is a good service and introduction when we read
books or magazines because it provides a clear overview of the whole context.
In the field of information retrieval, when we have to evaluate the contents of
documents, index could also be used for term statistics and content evaluation.
Index is associated with an inverted list, which contains lists of documents, or
lists of words. Every index has a posting referring to a document or location and
functioning a pointer. There are different ways of inverted index, like simple
pattern, index with term counts or with positions. Below we have an example
of sentences of dogs from Wikipedia and its sample inverted index. In table 2.2,
term statistics and locations are provided in detail.

• S1: There are many different shapes for dog tails.

• S2: The tail is traditionally docked to avoid injuries.

• S3: In some breeds, puppies can be born with a short tail or no tail at all.

2.1.3 Retrieval Models

After properly representing query and documents, strategies are used to calcu-
late the similarities between them to rank the relevant documents as output.
Similarity between query and document is actually relevance. From different
perspective or methods, the relevance could be topical relevance, user relevance,
binary or multi-valued relevance. The strategies are diverse according to their
theories, and different retrieval models are generated thereby. In general, re-
trieval models are regarded as basic ranking algorithms or match algorithms.
Boolean retrieval is a match algorithm to pick out the exact match documents
for query by logical relationships like and, or, and not. Boolean retrieval is rel-
atively easy to explain, but without any ranking, it highly relies on the query.
Differently, the vector space model uses the bag of words model and statistical
properties of text like term frequency, term document frequency, term weights,
ect, to build some scoring methods with methods like cosine similarity. With
different scoring method, different methods like TF-IDF and BM25 are created
as probabilistic models.
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Language Modeling is an effective method that represents each document
as a multinomial probability distribution over terms. By ranking the likelihood
probability of each document, the document rank is determined. Normally, the
language modeling method is given as followed.

P (q|d) =
∏
tεq

((1− λ)P (t|d) + λP (t))n(t,q) (2.1)

In this formula, the P (q|d) stands for the likelihood probability that a query q
is generated by document d. n(t,q) is the number of times that term t appears
in query q. P (t|d) is the probability that a term t appears in the document d.
P (t|C) is the likelihood probability that term t appears in the whole document
collection. To be noted that, both the P (t|d) and the P (t|C) are statistic
probabilities. The λ here is a smoothing parameter, which is set to get P (t|C)
into involved in the evaluation in case that P (t|d) is zero. The number of λ
ranges from 0 to 1, and the value of it will affect the evaluation performance.
As a result, the value of λ should well be set. Normally, λ is set to small number
like 0.1 to emphasize the effect of P (t|d).

Apart from the above methods, models handling complex queries and com-
bining evidence, web search method, and machine learning method are all under
research to enrich the information retrieval models.

2.1.4 Evaluation Methods

To build an effective and efficient web search engine, the ranked list should be
well evaluated by evaluation methods. Of course, the evaluation mostly occurs
in experimental stage. For a research purpose, some organizations are offering
experimental and evaluation platforms, like Text Retrieval Conference (TREC).
To achieve a better information retrieval performance, different aspects, which
could be effectiveness, efficiency, cost, etc, are to be evaluated. As a result,
different evaluation methods are created.

Recall and precision are the parameters reflecting effectiveness. What is
recall or precision? For instance, we have the set of relevant documents called
A and retrieved documents set called B. Recall is the percentage of retrieved and
relevant documents out of relevant documents, which is presented as following.

Recall =
|A ∩B|
|A|

(2.2)

Precision is the percentage of relevant and retrieved documents out of retrieved
documents, whose expression is below.

Precision =
|A ∩B|
|B|

(2.3)

Recall and precision reflect two aspects of effectiveness. To get a comprehensive
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effectiveness, the harmonic mean of recall and precision, which is noted as F, is
created.

F =
1

1
2 ( 1
R + 1

P )
=

2RP

(R+ P )
(2.4)

From the examples above, we can see that the precision and recall are good
ways to evaluate document sets. However, web search always outputs ranked
list instead of relevant and retrieved documents sets. To evaluate a ranked
list, we could calculate recall and precision values at every rank position to
evaluate efficiency. For example, we can calculate the precision at a ranking
position 5, which is noted as P@5. To take every position into consideration,
the average precision (AP) is created. In a ranked list with length of N, if a
relevant document is not retrieved, the precision is 0. For the relevant and
retrieved document in ranked position of n, the P@n is added to calculate the
average precision. The average precision is an effectiveness factor corresponding
to a specific query. To test web search method, we always use a set of queries. To
average the average precision of each query, the mean average precision (MAP)
is set. The MAP is a summarizing parameter to evaluate retrieval methods.

To evaluate efficiency, the reciprocal rank, which evaluates the efficiency of
first retrieved document, is created. The reciprocal rank (RR) is expressed as
followed.

RR =
1

p
(2.5)

where p is the position number of first retrieved document.
For multiple ranked lists, the mean reciprocal rank (MRR) is used for eval-

uation, which is the mean RR of all ranked lists. Actually, the ranked position
of a document is important because a relevant document in a bad position may
not be evaluated at all. To evaluate the usefulness of gain of retrieved list, the
discounted cumulative gain (DCG) is created for evaluation. The DCG at rank
position p is expressed below.

DCGp = rel1 +

p∑
i=2

reli
log2, i

(2.6)

where rel is the graded relevance level of the document retrieved. Alternatively,
the expression is altered as following and used by commercial web search com-
panies.

DCGp =

p∑
i=1

2reli−1

log(1 + i)
(2.7)

Similar to MAP, when a set of queries are used, a more comprehensive factor is
created, which is called normalized DCG (nDCG).
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2.2 Ranking Objects

In the field of information retrieval, research on tasks like federated search,
expert search and blog distillation have been conducted for years and many
excellent methods are created to contribute to searching services. To be noted
that, we introduce how to rank documents with retrieval methods last section, in
this section, we would introduce methods ranking objects instead of documents
in all the three use cases. In general, all these use cases could divide their
ranking strategies into two ways, early fusion and later fusion, when multiple
information sources needed for searches. Here, a table of methods classification
based on fusion methods is created for a clear introduction.

2.2.1 Ranking Collections

In federated search, two different environments, which are cooperative environ-
ment and uncooperative environment, are to be considered. The cooperative
environment involves the cooperation between the collections and the brokers,
who are responsible to rank the related collections. In this environment, the
collection provides term statistic information to brokers for knowledge on itself.
On the contrary, in uncooperative environment, the collection dose not offer any
information, instead, to know the contents of collections, the brokers need to
send some sampling queries to collections and by response to get knowledge of
the collections.

In federated search, some methods are designed for cooperative environment,
some are for uncooperative environment, and some are for both. Methods like
GLOSS, CORI, CVV and etc, get widely recognized as early fusion strategies.
The ReDDE, CRCS, SUSHI, etc, are the representative late fusion methods in
federated search. The Lexicon-based collection selection method could be used
in uncooperative environment. It regards each collection as a bag of words and
lexicon on collection is created. By comparing the similarities between query
and lexicons, the collections are ranked. The CLOSS method is created for
cooperative environment and only supports Boolean queries. Collections are
ranked by the goodness value, which actually is sum of the cosine similarity be-
tween the query and documents within a collection. Similar to INQUERY adhoc
information retrieval method, the CORI method implements the Bayesian in-
ference network model to calculate the beliefs to rank the collections. Like the
CLOSS method, the CVV method also calculates the goodness scores. How-
ever, the goodness here is different from that of CLOSS because it stands for the
sum of similarity between each term and collections. The late fusion strategies,
which are document-centric methods here, are mostly designed for uncooper-
ative environment. The ReDDE calculates the ranking scores between query
and the number of queries related documents with the collection. To determine
the most relevant documents, the threshold is set to separate the documents by
relevance. The same strategy is adopted in the CRCS, however, by consider-
ing the position of document in the CRS ranking, the importance of document
is changed. As a result, the goodness value will change correspondingly. In
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both ReDDE and CRCS, when ranking the most relevant documents, the cutoff
values are fixed. With a soft set for cutoff values, the SUSHI method is also
able to achieve similar performance than ReDDE or CRCS. Obviously, methods
like ReDDE can achieve high recall. However, different applications may have
different goals. To make goal more suitable for each scenario, other factors like
precision are also taken into consideration in UUM. With multiple goals, the
utility could be set and maximized. The RUM is created to solve the problem
when some ineffective retrieval methods are used in some collections. When the
utility function only contains the cost of retrieval, the goal should be changed
to minimize the utility. This is what DTF focus on.

2.2.2 Ranking Experts

Similarly, in the field of expert search, the early fusion and late fusion methods
are explored and put into practice as shown in this table. One of the early
fusion methods builds a representation of each candidate by concatenating all
documents associated with the candidate. Otherwise, it could weigh the associ-
ation between a candidate and documents by formalizing a language modeling
framework. Also, the late fusion methods divide by their methods. Probabil-
ity model is also used for expert finding. In the early stage of expert search,
database containing a description of people’s skill within an organization is used
for ranking. Then, a modified HyperlinkInduced Topic Search (HITS) algorithm
to identify authorities and HITS and email communications enhanced method
were put forward afterwards. The late fusion methods achieves higher diversity
than early fusion with much more methods created and used in different ap-
plications. The voting approach uses the rankings of documents and document
votes for candidate. To find out some software expertise candidates, rules of
thumb enhanced identifying method are provided. Or, the published intranet
documents could be regarded as sources. For given standard search engines, ex-
pertise is to be found with some methods. A method finding relevant documents
for query and scoring each candidate for ranking gets widely used.

2.2.3 Ranking Blogs

As for blog distillation, the blogger model is one of the most popular early fu-
sion approaches. Indexing method also has a great impact on the performance
of blog distillation. As a result, taking different indexing units approaches into
consideration will provide feed distillation with more selections. Theories in
other fields sometimes work well for blog distillation. For instance, researchers
apply expert search voting models, cluster-based retrieval model or lager docu-
ment model for blog distillation, achieving great performances. Corresponding
to the blogger model, the posting model is one of the most widely used late
fusion methods in this field. The same as early fusion, different indexing units
approaches for feed distillation are adopted as well. Opposite to large document
model, small document model is used in the late fusion methods. Besides, fed-
erated search methods like ReDDE could be adjusted to blog distillation. As
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shown in the table, some other blog distillation methods are mentioned in the
classification table.

Of course, a complete information retrieval on a web engine involves multiple
tasks instead of only resource selection. All the literatures included in this table
are mainly used in the phase of resource selection, which is also the focus in this
project. Therefore, the models adopted in this project and research work will
focus on the resource selection part.

”Early fusion” ”Late fusion”

Federated Search
Gravano et al.
[27],Gravano et al.
[28]

GLOSS

Callan [12],Callan
et al. [13]

CORI

Yuwono and Lee
[58],Yuwono and
Lee [57],Goldberg
[26]

CVV. Cue-validity vari-
ance

Neumayer et al.
[37]

Collection-centric model Entity-centric model

Zobel [59] Inner-product ranking

Wu et al. [52],Yu
[55],Yu et al. [56]

Global frequency method

Si et al. [49]
Kullback-Leibler diver-
gence

D’Souza and
Thom [19]

n-term indexing method

Baumgarten
[9],Baumgarten
[10]

Baumgarten probabilistic
model

M. Sogrine and
Kushmerick [34]

Combination of CORI and
CVV

Si and Callan
[47],Ponte and
Croft [42],Lafferty
and Zhai [33]

ReDDE

Shokouhi [45] CRCS

Thomas and
Shokouhi [50]

SUSHI

Si and Callan [48] UUM

Si and Callan [48] RUM

Fuhr [23],Fuhr
[25],Fuhr [24]

DTF
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Nottelmann and
Fuhr [38]

Long queries

Nottelmann and
Fuhr [39]

Short queries

Expert Search
Macdonald and
Ounis [35]

Voting approach

Fang and Zhai [21]
Candidate generation
model

Craswell et al. [14]
P@NOPTIC Expert
Search System

Balog et al. [5]
Document-candidate
association

Yimam-seid and
Kobsa [54]

Early approach

D’Amore [15]
HITS and email communi-
cations enhanced method

Mockus and Herb-
sleb [36]

Rules of thumb enhanced
identifying method

Hertzum and Pe-
jtersen [30]

Standard search engine

Blog Distillation
Balog et al. [6] Blogger model Posting model

C. Macdonald and
Soboroff [11]

Consider the task of find-
ing relevant blogs

Elsas et al.
[20],Seo and Croft
[44]

Different indexing units
approaches

Different indexing units
approaches

Hannah et al. [29]
Expert search voting
model

Seo and Croft [44]
Cluster-based retrieval
model

Elsas et al. [20] Large document model Small document model

Arguello [3],Elsas
et al. [20]

ReDDE

C. Macdonald and
Soboroff [11]

Combination of blogger
and posting models

Table 2.3: Literature classification based on different fusion methods
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Chapter 3

Fusion Models

In this project, two fusion strategies, which are object-centric model and document-
centric model separately, will be implemented with several different test collec-
tions. Actually, object-centric is a model adopting early fusion, and document-
centric model uses late fusion strategy. In this chapter, the formal descriptions
of these two models will be given.

3.1 Object-centric Model

Object-centric model treats each object, which could be a collection, an expert
or a blog, etc, as a single and large document. Under the language modeling
framework, the probability of the object generating the query is expressed as
follows.

P (q|o) =
∏
tεq

{
(1− λ)(

∑
dεo

P (t|d)P (d|o)) + λP (t)
}n(t,q)

(3.1)

where n(t,q) is the number of times term t appears in the query q. This expo-
nent parameter makes the equation simpler to include every term. Besides, the
n(t,q) can be easily determined by term statistic in query when analyzing the
information needs.

P (q|o) is the probability of the object o generating the query q, which can
be interpreted as the relevance between the object o and the query q. Higher
probability means better relevance, and object with higher probability will be
more likely to be selected for information retrieval. For object-centric model,
it is determined by calculating the multiplicative probabilities of every term in
the query q.

λ is a smoothing parameter. In case of data sparsity in documents object, the
technique of smoothing is adopted to lower the probability estimates for terms in
object o. For instance, if one term is missing from the document, the probability
will be zero, which is not proper for longer queries. Thus, the background
language model probability, which is also known as the object language model
probability or background probability, is taken into consideration. λ ranges
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from 0 to 1. The value of λ will affect the probability. Thus, a proper value of
λ is important for this model.

P (d|o) is the document likelihood given the object. Normally, P (d) is as-
sumed to be uniform for all documents. Therefore, P (d|o) is also assumed to
be equally important in a certain object. In the probability calculation, it acts
as weight to combine every document and is set to 1

|o| , where |o| is the number

of documents related to object o. We could also give binary weights to explore
the effect of document-object association.

P (t|d) is the maximum-likelihood estimate of the probability of observing
term t given the document d. It is used to calculate the probability of a par-
ticular document generating one specific term. By summing every probabilities
with uniform weights, the maximum-likelihood estimate of the probability of
observing term t in the object o could be generated. The obvious estimate
would be

P (t|d) =
ft,d
|d|

(3.2)

ft,d is the number of times term t occurs in document d. |d| is the number
of words in document d. For a multinomial distribution, this is the maximum
likelihood estimate, which means the estimate that makes the observed value of
ft,d most likely.

P (t) is the maximum-likelihood estimate of the probability of observing term
t given background language models, which are estimated from all sampled
documents. It is adopted in case of data sparsity. The way to determine P (t)
is similar to that of P (t|d).

To implement the object-centric model in programming, the pseudo code of
object-centric model is provided in algorithm 1 and algorithm 2. Actually, all
the scores are computed in the logarithmic space.

Algorithm 1 Object-centric algorithm

1: Preprocessing: remove all out-of-vocabulary terms in query
2: Initialize log(p(q|o)) = 0 . Initialize log(p(q|o)) for all objects
3: for t in q do . Compute p(t|o) for every term and add it into log(p(q|o))
4: ft,q = Term− Frequency − In−Query
5: Go to algorithm 2: Get-index-freqs(t)
6: With t as input get output: p(t|d) dictionary
7: Initialize p(t|o)[o] = 0 . Initialization sum(p(t|d) ∗ p(d|o) for object
8: for every object do . Compute p(t|o) for all objects
9: for docID in object do

10: p(t|o)[o]+ = p(t|d)[docID] ∗ p(d|o), p(d|o) = 1
len(o)

11: end for
12: log(p(q|o))+ = log((1− λ) ∗ p(t|o)[o] + λ ∗

∑
d ft,d∑
d |d|

) ∗ ft,q
13: end for
14: end for
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Algorithm 2 Get-index-freqs(t)

Initialize p(t|d)[docID] = 0 . Initialize p(t|d) for all docs
2: ftdlist[docID] = 0 ,for all docID . Initialization term freq in doc

Update the ftdlist(term freq in doc) using whoosh
4: for each docID do . Update p(t|d) for all docs

ft,d = ftdlist[docID]
6: doclen = length− of − current− doc

pt,d = ft,d/doclen
8: p(t|d)[docID] = pt,d

end for

3.2 Document-centric Model

Instead of creating a direct term-based representation of objects, we model and
query individual documents, then aggregate their relevance estimates. Formally

P (q|o) =
∑
dεo

P (d|o)
∏
tεq

((1− λ)P (t|d) + λP (t))n(t,q) (3.3)

where, as section 1, n(t,q) is the frequency of term t in the query q.
P (d|o) is the document weight in a certain object, which means importance

of the document in o. Normally, P (d|o) is set to 1
|o| to make documents equally

important as assumption.
λ is a smoothing parameter as described in section 1. P (t|d) and P (t)

are the term probabilities.
∏
tεq ((1− λ)P (t|d) + λP (t))n(t,q) demonstrates the

query likelihood given a document d. By equally weighing every likelihoods from
documents in object o, the probability of object o generating a query could be
determined.

To implement the document-centric model in programming, the pseudo code
of document-centric model is provided in algorithm 3. Actually, all the results
are presented in their logarithmic.
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Algorithm 3 Document-centric algorithm

Preprocessing: remove all out-of-vocabulary terms in query
Initialize log(p(q|o)) = 0 . Initialize log(p(q|o)) for all objects

3: Initialize p(q|d)[docID] = 0 . Initialize p(q|d) for all docs
for t in q do . Compute p(t|d) and add it into p(q|d)

ftdlist[docID] = 0, for all docID . Initialization freq term in doc
6: ft,q = Term− Frequency − In−Query

Update the ftdlist(term freq in doc) using whoosh
for each docID do . Compute p(t|d) for all docs and add it into p(q|d)

9: ft,d = ftdlist[docID]

p(q|d)[docID]+ = log((1− λ) ∗ ft,d
len(doc) + λ ∗

∑
d ft,d∑
d |d|

) ∗ ft,q
. Add p(t|d) to get p(q|d)

end for
12: end for . Now we get p(q|d) for all docs

for each object do . Get p(q|o) by sum(p(d|o) ∗ p(q|d))
for docID in object do

15: p(q|o)+ = p(q|d)[docID] ∗ p(d|o)), p(d|o) = 1
len(o)

end for
end for

3.3 Additional Comment on Two Models

The relationship between object-centric model and document-centric model
could be understood well by more assumption. Assume that there is only one
document in object o. The value of P (d|o) is 1 and Equation 3.1 and Equation
3.3 will both become

P (q|o) =
∏
tεq

{
(1− λ)(P (t|d)P (d|o)) + λP (t)

}n(t,q)
(3.4)

which highly shows the relationship between this two models. However, ob-
ject with only one document will be meaningless for distinguishing. In most
cases, the size of collection is proper. Then we can see the difference between
aggregating terms in query and aggregating documents in object. Besides, the
probabilities are always small, and logarithmic is used for distinguishing docu-
ments and the two strategies.

3.4 Estimating Document-object Association

Each object may be associated with a number of documents. When estimating
document-object association, different methods, which lead to different P (d|o)
in object-centric and document-centric models, can be used for comparison. For
instance, documents can share the same importance within a object, and the
number of associated documents is used for estimating the document-object
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association. Otherwise, all documents can share the same importance by ignor-
ing objects. In this case, the length of documents is normally huge and then
a binary weight is given to each document. To setup experiments later, these
two estimating methods are used and results are to be compared. In these
two estimations, the P (d|o) in object-centric and document-centric models are
expressed below.

• Estimation One

P (d|o) =

{
1, d ∈ o
0, d 6∈ o (3.5)

• Estimation Two

P (d|o) =

{ 1
len(o) , d ∈ o

0, d 6∈ o (3.6)

In equation 3.6, len(o) means the length of a object. d ∈ o means the document
is associated with the object, d 6∈ o means not. Actually, the length of a object
equals to the number of documents associated with it. In this project, two
different kinds of experiments are carried out regarding to P (d|o) in different
search tasks.
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Chapter 4

Three Search Tasks

In this chapter, we will introduce three search tasks of federated search, expert
search and blog distillation and their test collections.

4.1 Federated Search and Test Collection

4.1.1 Federated Search

Federated search is a federated information retrieval technique, which is used
for searching different data collections at the same time. When we have a query
topic, we may turn to different data collections for the results. However, differ-
ent collections would provide different retrieval results. To get a comprehensive
result, we can integrate the results from different collections and then merge
them into a single retrieval list. This is what federated search focuses on. The
federated search technique is adopted by many commercial search engines, that
is why when we search some topic, the retrieval results from search engines
like Google contain results in different formats, like texts, pictures, etc. Be-
sides, federated search techniques can search the hidden web collection contents
without crawling [1]. To realize a successful federated search, there are three
major challenges involved, that are collection ranking, collection representation
and result merge respectively. In this article, we mainly focus on the collection
ranking problem.

Why We Need Federated Search

With the advancement of information retrieval techniques, search engines are
becoming more and more important to answer our daily questions. We may
turn to search engine for book or movie recommendations, and we may get to
know of celebrities by searching their names, etc. Majority of us now turn to
search engine for the digital format results including economy, policy, study,
entertainment, etc.
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We all know that the retrieved results by search engines are lists of different
web texts or other format files. Actually, when receiving a query, the search en-
gine could analyze the crawled information from different web pages to manage
the results by the relevance between the query and the documents. However,
the amount of web pages is huge, also, there are a lot of web page information
can not be crawled at all for some reasons. Techniques could be set to solve the
uncrawled-problem, but we can also directly turn to the most relevant docu-
ment collections for results as the federated search does. Actually, users always
prefer the most relevant information. As a result, if the search engines could
directly turn to the relevant document collections instead of all web collections,
the results would be faster and more relevant. From this perspective, the feder-
ated search could also be used within enterprise search system for more specific
queries.

Architecture and Implementation Introduction

In a typical federated search system, a distributed architecture with a central
section is adopted. The central section, which is broker, is responsible for receiv-
ing queries from users and sending queries to document collections for results.
When sending the queries to collections, these collections should be relevant
and thus should be selected by rank before sending. To determine the relevant
collections, the collection ranking problem is produced. When ranking the col-
lections, broker could analyze the relevance between the query and collections
and then determine the most relevant collections.

The relevance analysis problem divide the federated search into two situa-
tions. In a cooperative environment, collections provide their content informa-
tion to broker, making broker get a basic idea on each collection. In a uncoop-
erative environment, collection information is not offered anymore, as a result,
the broker could send sampled queries to each collection, and by the retrieval
results, ideas on each collections could be known. As a result, we should know
how to represent the collections, how to rank the collections and how to merge
results from different collections.

The federated search is also get well used on the web. The most common
forms of federated search on the web are vertical search, peer-to-peer networks
and metasearch engines [1]

.

Federated Search Methods

For collection representation, methods vary by environment. To merge results in
federated search, data fusion and metasearch mering methods could be adopted.
In this subsection, we mainly discuss the collection ranking methods.

Collection ranking could be a complicated problem. After years study, var-
ious methods were put forward to solve this problem. In early stage, collec-
tions are regarded as big bags of words and ranked according to their lexicon
similarity with the query [10], which is called lexicon-based collection selec-
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tion. GLOSS is one lexicon-based collection selection method only support-
ing Boolean queries [27]. CORI adopts a Bayesian inference network model
with an adapted Okapi term frequency normalization formula [12]. The Cue-
validity variance (CVV) method only stores the document frequency informa-
tion [58]. Actually, all the lexicon-based collection ranking could be regarded
as collection-centric methods because they all treat the document collection as a
big single document. Differently, there are a lot a document-surrogate methods
which are typically designed for uncooperative environments. The relevant doc-
ument distribution estimation (ReDDE) collection selection algorithm adopts
huge amount of documents to rank collections [47]. The centralized-rank col-
lection selection method(CRCS) adopts different weighs for sampled documents
according to their ranks [45]. Also, SUSHI, UUM, RUM, DTF,etc, are typ-
ical document-surrogate methods. Besides, the classification-based collection
ranking implements the query clustering techniques [51], and the overlap-aware
collection ranking manages duplication across collection when ranking collec-
tions [46].

To evaluate the federated search methods, document collections are adopted
as the inputs and retrieval results are the outputs. In this articles, we adopt
TREC 2013 and TREC 2014 collections as test collections. These collections
are consisting of large number of documents. By the document-centric model
and collection-centric model, the collection selections are obtained. 50 queries
are provided in each dataset. For each query, the top N relevant collections with
other information are generated in the output files.

4.1.2 FebWeb 2013 Collection

Overview of Data Collection

The TREC Federated Web Search (FedWeb) track 2013 provides a test collec-
tion that simulates research in many areas related to federated search, including
aggregated search, distributed search, peer-to-peer search and meta-search en-
gines [1]. In many other test collections, the data sets may be set or created
artificially. But the FebWeb 2013 could provide the actual results of 157 real web
search engines, including YouTube, LinkedIn Blog, Wikepedia, etc. It is noted
that each engine has its own information retrieval methods and file sources [16].
This data collection could be used for two different search tasks, which are re-
source selection and results merging. In this collection, document collection is
not provided. Instead, sampled search results from different search engines are
given. To get the sampled search results, 2000 queries are sent to each search
engine and top 10 results, including snippets and pages, are retrieved for every
query. Actually, the first 1000 queried are obtained using Zipf method and the
rest are randomly selected terms from the sampled documents collected from
search engines. Below is a document snippet from 1973591 records. In each
snippet, the whole document could be downloaded following the link. In this
project, only snippets are used for describing the search engines.
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<snippet id="FW13-e001-5000-02"><link 

cache="FW13-sample-docs/e001/5000_02.html">http://arxiv.org/abs/adap-org/9912004</link><ti

tle>Title: Fitness versus Longevity in Age-Structured Population 

Dynamics</title><description>Title: Fitness versus Longevity in Age-Structured Population 

Dynamics 

Authors: 

W. Hwang,  

P. L. Krapivsky,  

S. Redner 

Comments: Comprehensive version of PRL 83, 1251-1254 (1999) Revtex 2 column format, 11 

pages, 6 figures 

Journal-ref: J. Math. Biol. 44, 375-393 (2002). 

Subjects: Adaptation and Self-Organizing Systems (nlin.AO); Statistical Mechanics 

(cond-mat.stat-mech); Populations and Evolution (q-bio.PE)</description></snippet> 

Figure 4.1.1: Snippet example of federated search in 2013

Queries and Qrels

To test the data collections and information retrieval methods, 50 different
queries are selected and provided. To select the 50 different queries, a query
pool is created with 506 queries, including 271 new queries from real life and
queries from previous TREC tracks, like FedWeb 2009 and 2010. Afterwards,
200 queries are selected firstly to represent all categories. Then based on the
relevant distribution of the judged snippets, which are top-3 snippets from each
resource corresponding to the 200 queries, 50 queries are determined. Each
query has a structured document format, including topic id, query, description
and narrative. The topic id is used for distinguishing; Query is consisting of
several query terms; The description describes the query target and narrative
gives more information on the query. Normally, only the topic id and query are
used in our models.

Also, the relevant judgments (Qresl) are provided for evaluation. Below, a
query example is given.

<topic evaluation="TREC" id="7001" official="FedWeb13" origin="new">  

<query>LHC collision publications</query>  

<description>You want to find scientific publications on LHC (Large Hadron Collider (LHC)) 

collisions. Books or scientific video lectures are accepted, too.</description>  

<narrative>You want to study the most recent knowledge on the topic in depth. You expect 

scientific publications to be most helpful, including books (you might consider buying one), but 

scientific video lectures or encyclopedia might be interesting as well.</narrative>  

</topic> 

Figure 4.1.2: Query example of federated search in 2013
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Overview of Participant Approaches

Nine FedWeb participants experimented for the resource selection task with
their own approaches [1]. University of Delaware (udel) ranked the resources
based on the average document scores (udelFAVE). The rank of the highest
ranked documents (udelRSMIN) and ranks of documents are used to find re-
source scores with a cut-off (udelODRA), which was determined by experi-
ments. University of Padova (UPD) combined the query words using OR
(UPDFW13sh) and explored the effectiveness of the TWF-IRF weighting method.
University of Twente (ut) adopted a statistics of all shards enhanced selection
method with a baseline (utTailyM400) for comparison. Centrum Wiskunde and
Information (CWI) ranked the resources using Jaccard similarity (cwi13ODPJac)
and TF-IDF similaritiy (cwi13SniTI) between the ODP categories of the query
and each resource. University of Stavanger experimented with Document-centric
model and Collection-centric model. International Institute of Information
Technology (IIIT Hyderabad) adopted Wordnet synonyms and Wikepedia cate-
gories for query expansion (iiitnaive01). East China Normal University (scunce)
used Google search for query expansion and ranked resources using BM25 (EC-
NUBM25). Indian Statistical Institute (isi pal) used the Google Search API to
issue the test queries. Stanford University (StanfordEIG) ran StanfordEIG10
based on a Cassandra database containing meta information on the search en-
gines.

When ranking resources, different sources like snippets, documents, ODP,
Wikipedia, WordNet, Google search or combinations of them could be used.
The table 4.1 demonstrates some excellent results from the above approaches
according to the parameter of nDCG@20, which means discouted cumulative
gain at rank 20. The run “UDPFW13mu” excuted by UPD got the best re-
sult among all these approaches with documents in use. When only snippets
were used for resource ranking, the run “UiSS” run by UiS achieved highest
result against other participants. Also, some of best results from each team are
provided in this table.

4.1.3 FebWeb 2014 Collection

Overview of Data Collection

The goal of the Federated Web Search (FedWeb) track is to evaluate methods of
federated search at very large scale in a realistic setting by combining different
search engines [2]. Similar to the data collection in 2013, the collection in 2014
consists of sampled search engine results, actually, top 10 results are included.
Besides, the corresponding pages these snippets referring to are downloaded to
create source descriptions for search engines [17].

Apart from resource selection and results merging, the search task of vertical
selection, which aims to classify query into a fixed set of 24 verticals, can also
be realized using the test collection, which is different from that of 2013. What
is more, to get the sampled results, 4000 queries are sent to each search engine
to retrieve the results for sampling. Although the amount of queries is doubled,
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Group ID Run ID nDCG@20 nP@1 nP@5 resources used
UPD UPDFW13mu 0.299 0.16 0.21 documents
UiS UiSS 0.165 0.16 0.21 snippets
udel udelFAVE 0.244 0.20 0.22 documents
ut utTailyM400 0.216 0.17 0.23 documents

CWI cwi13SniTI 0.123 0.10 0.19 snippets
snippets

III Hyderabad iiitnaive01 0.107 0.13 0.17 Wikepedia
WordNet
snippets

scunce ECNUBM25 0.105 0.07 0.10 Google
search

isi pal incgqdv2 0.037 0.11 0.06 Google-
Query

StanfordEIG StanfordEIG10 0.018 0.07 0.02 documents

Table 4.1: Results of different approaches

the contents of queries are similar, the first 2000 queries are single words based
on frequency bins and the rest 2000 queries are randomly selected terms from
the first 2000 snippets. Below is a document snippet from 1973591 records. In
each snippet, the whole document could be downloaded following the link. In
this project, only snippets are used for describing the search engines.

<snippet id="FW14-e002-5004-08"> 

<link cache="FW14-sample-docs/e002/5004_08.html" timestamp="2014-04-21 

22:24:39">http://liinwww.ira.uka.de/cgi-bin/bibshow?e=Ebubcbtf0Xjfefsipme02:9:/fyqboefe%7d

2:334&amp;r=bibtex&amp;mode=intra</link><title>Tool Attachment in 

EIS</title></snippet><snippet id="FW14-e002-5004-09"><link 

cache="FW14-sample-docs/e002/5004_09.html" timestamp="2014-04-21 

22:24:39">http://liinwww.ira.uka.de/cgi-bin/bibshow?e=Ebubcbtf0Xjfefsipme02:9:/fyqboefe%7d

41713&amp;r=bibtex&amp;mode=intra</link><title>Alternative Storage 

Technologies</title></snippet> 

Figure 4.1.3: Snippet example of federated search in 2014

Queries and Qrels

Similarly, 50 topics are provides for evaluation. In FedWeb 2013, 506 topics
are given and 200 topics are selected firstly, leaving 306 topics unused. In
FedWeb 2014, 75 queries are selected firstly from the remaining 306 queries
manually, enabling the topics to target other verticals [17]. Finally, 10 topics
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are selected for online evaluation and other 50 queries are selected for testing
data collections. The query structure is similar to that of 2013, however, the
contents in narratives are manually created by going through searched results
instead of using snippets in 2013. Also, similar qrels are given for evaluation.

Overview of Participant Approaches

In 2014, ten participants explored their approaches in the resource selection
task, including 44 runs in total. Four runs executed by East China Normal
University (ecnucs) got relatively better results when only snippets taken into
consideration. Differently, three runs used external resources, like Google Search
and data from KDD 2005.

Similarly, the table 4.2 lists some of the good results from these 44 runs.
Among all the runs, the “ecomsv” got highest score in nDCG@20. The run
“eseif” got best result when only snippets taken into consideration. Besides, all
best results from each participant are provided in this table.

4.1.4 FedWeb Greatest Hits

FedWeb Greatest Hits is a large test collection based on the data used in the
TREC Federated Web 2013 and 2014. The new dataset contains large amounts
of search results for sampled queries, as well as a set of test topics [18]. Compar-
ing to FedWeb 2013 and 2014, FedWeb Greatest Hits contains lots of additional
data, including previously unreleased search results, results screen shots, a large
amount of graded relevance judgments for snippets and pages, annotated dupli-
cate pages, and evaluation scripts.

4.2 Expert Retrieval and Test Collection

4.2.1 Expert Search Description

The expert search or expert retrieval is the process to find the ranked list of
experts corresponding to a certain query theme or a certain field based on dif-
ferent documents or textual resources that can describe or represent the related
experts. The expert retrieval could be regarded as a branch of information re-
trieval. In the field of expert search, different works are involved to solve the
problem. For instance, the expert names should be deterministic, which could
be solved by linking more information, like e-mail address. Textual collections
should be well arranged and ranked because they have different sources or con-
tents. Methods to evaluate experts are kept being studied as various emphasis
on models.

Why We Need Search Expert

Experts always have talent or comprehensive understanding on certain fields.
When facing up with technical or professional problems, turning to experts could
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Group ID Run ID nDCG@20 nDCG@10 nP@1 nP@5
ECNUCS ecomsv 0.700 0.601 0.525 0.579
ECNUCS eseif 0.651 0.623 0.306 0.546
ICTNET ICTNETRS05 0.436 0.391 0.489 0.377
NTNUiS NUNUiSrs2 0.348 0.281 0.206 0.257
ULugano ULuganoDFR 0.304 0.193 0.137 0.164

UPD UPDFW14tipsm 0.311 0.226 0.123 0.187
dragon drexe1RS1 0.389 0.348 0.222 0.318

infor ruc FW14Search50 0.517 0.426 0.271 0.404
udel udelftrsbs 0.355 0.272 0.166 0.255

uincGSLIS uincGSLISf1 0.348 0.249 0.101 0.212
ut UTTailyG2000 0.323 0.251 0.143 0.224

Group ID resources used
ECNUCS snippets, Google, KDD 2005
ECNUCS snippets

ICTNETRS05 documents, Google API, NLTK, GENSIM
NTNUiS snippets, documents
ULugano documents

UPD documents
dragon documents

infor ruc snippets
udel documents

uincGSLIS documents
ut documents

Table 4.2: Results of different approaches
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be a wise choice to solve them effectively and efficiently. With the advancement
of information technology, the related information could be obtained from net-
work or digital format quickly nowadays. However, sometimes the information
that is available might be hard to express in writing or it may be difficult to
analyze [8]. In this condition, if we can find the demanding experts efficiently,
problems of individual or within a company could be tackled with low timing
cost.

Expert Search Methods

Expert search could be a toughing problem. Involving all candidate experts, the
ambiguous expert names, heterogeneous sources to present experts and ranking
candidate experts all contribute to its difficulty.

To find experts by expert search methods, the input could be documents
or document collections, in which each document is related to one or more ex-
perts by describing something that experts research on. Different test document
collections like W3C, CERC, Uvt, DBLP, INDURE, ect, were developed by re-
searchers in the past years. In this project, the Commonwealth Scientific and
Industrial Research Organisation (CSIRO), which was the first test collection
using judgments made by employees of the organization at hand, is selected as
the test document collections.

Document collections are created to provide information on problems or
themes. Each document in collections is written by expert or related to one
or several experts. Because of the correction between experts and document or
collections, when analysing the documents or collections on a specific field, the
related experts could be ranked by correction scores. To use the test collections,
different topics are created. As a result, documents, experts and topics are
involved in the expert search problem. The important work in expert search
is to build the relationship among these factors. Actually, a topic is actually
a specific problem in reality. To tackle this problem, the candidate experts
should be determined by estimating the association between query topic and
experts. During the estimation, the documents are used as connections between
the query topic and experts. Finally, the output we generate should be expert
ranks for each query topic according to the correction between expert and topic.
In each rank record, more specific information, like expert’s email address, rank,
and scores, could be also provided.

To estimate the association between query and experts, there are various
methods. In this project, the language model is adopted. In specific, there are
expert-centric model and document-centric model respectively. The difference
between the two models relies on the way to present the candidates. When
we have determined the expert-document association, which includes all doc-
uments related to a certain expert, the relationship between documents and
experts have been known. The expert-centric model ranks associations and re-
sponds to queries; the document-centric model ranks documents and builds the
association scores. After years study, another probability model, the discrim-
inative probabilistic model, is also applied for estimation. In this model, the
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discriminative probability is used as the ranking factor instead of general prob-
ability [22]. Besides, the voting model [35] is applied for estimation, in which
method, data fusion techniques and ideas of combining evidence from differ-
ent sources are used for ranking experts. Apart from the above textual-based
method, the graph-based models are also adopted to estimate association [41].
Instead of analyzing only the internal relations, the external relations are also
taken into consideration in graph-based models by analyzing links, etc. As a
brunch of information retrieval, some information retrieval methods, like topic
modeling, the vector space model, etc, are also adopted in expert search.

4.2.2 CSIRO Enterprise Research Collection in 2007

The CISRO Enterprise Research Collection (CERC) is an information retrieval
test collection, and consists of a document collection, topic descriptions, and
relevance judgments for documents and experts. It was first used in the 2007
Enterprise Trace [4].

CSIRO Documents

The collection consists of 370715 documents stored in 267 different CSIRO files,
which were created in March 2007. The total size of all the documents is around
4.2 gigabytes. According to literature [4], 89% of documents are HTML pages,
4% are word, pdf or excel documents, and the rest is a mixture of multimedia,
script and log files. Each document has its document identifying number, title
and descriptive text. It is noted that all the contents in documents are crawled
from real enterprises (official Web sites) to make the expert retrieval experiments
more realistic. To realize the expert retrieval, the document-centric model and
expert-centric model are used to score all the documents. Normally, an index-
ing work using schema to index document identifying number and descriptive
contents should be achieved. When indexing, the text should be converted into
lower case and some stop words should be removed.

Topic Descriptions in 2007

To evaluate the performance of expert retrieval, 50 different topics are pro-
vided in file “07.topics.CE001-050.txt”. Actually, these topics are created by
science communicators, who are responsible for finding the demanding experts
and asked to provide topics in their own fields [40]. Normally, these topics
could be used for document search and expert search. Each topic consists of
topic number, query terms, topic descriptive text and related document identify-
ing number. To be specific, the topic number is used for distinguishing different
topics; query terms could be used for searching documents related to these terms
acting as information needs or act as expert key words in expert search; topic
descriptive text and document identifying number are used to build overview
page for document search in case of not existing. When expert retrieval ex-
periments carried out, only the topic number and query are needed. Below an
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example of query is provided.

<top>  

<num>CE-002</num>  

<query>hairpin RNAi / gene silencing</query>  

<narr>  

Information to help scientists find out more about hairpin RNAi technology.  

Specific contacts to obtain vectors.  

</narr>  

<page>CSIRO197-05231046</page>  

<page>CSIRO139-13111797</page>  

<page>CSIRO145-13752815</page>  

</top> 

Figure 4.2.1: Query example of expert search

Overview of Participants’ Approaches in 2007

Fifteen participants got involved in the expert search exploration in 2007, sub-
mitting 45 automatic, 4 feedback and 6 manual runs. Majority of the partici-
pants used the two-stage models. Homepages of the identified candidate names
were used to assessing by some teams. The lack of candidates list somehow
affected the evaluation results when some candidates’ email could not be corre-
spondingly found. Here we also provide some of the evaluation results. Table
4.3 gives the best runs using traditional retrieval methods according to the pa-
rameter of MAP. The runs of manual runs outperformed than normal runs, and
the results are given in table 4.4. We could find that the manual runs mostly
outweigh automatic runs. Among all the automatic, feedback and manual runs,
the manual run “ouExNarrRF” got the first prize. Also, some automatic run
got better results than manual runs, like the participant of DUT, by comparing
the two tables. It is noted that the feedback runs got normal results between
other two runs, as a result, the evaluation results are not provided here.
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Group Run MAP P@5 P@20
Tsinghua THUIRMPDD4 0.4632 0.2280 0.0910

SJTU SJTUEntES03 0.4427 0.2360 0.0910
OUOU ouExTitle 0.4337 0.2520 0.0950
CAS ExpertRun02 0.3689 0.2040 0.0790

CSIRO CSIROesQnarr 0.3655 0.2240 0.0770
Wuhan WHU10 0.3399 0.1960 0.0710
Glasgow uogEXFeMNZcP 0.3138 0.2200 0.0800

UvA uams07exbl 0.3090 0.2080 0.0790
DUT DUTEXP1 0.2630 0.1400 0.0580
Fudan FDUn7e3 0.1788 0.1440 0.0610
Beijing PRISRR 0.1571 0.0920 0.0440
Twente qorwnewlinks 0.1481 0.1080 0.0540
Peking zslrun 0.0944 0.0600 0.0220

Hyberbad AUTORUN 0.0939 0.0560 0.0330
UALR UALR07Exp1 0.0200 0.0160 0.0130

Table 4.3: Best results of automatic runs of each participant

Group Run MAP P@5 P@20
OU ouExNarrRF 0.4787 0.2720 0.0990
OU ouExNarr 0.4675 0.2680 0.0980

DUT DUTEXP3 0.3404 0.1840 0.0680
DUT DUTEXP2 0.3324 0.1920 0.0640
DUT DUTEXP4 0.1876 0.1000 0.0440

UALR UALR07Exp3 0.1840 0.1320 0.0360

Table 4.4: Results of manual runs

4.2.3 CSIRO Collection in 2008

Topic Descriptions in 2008

The document collection used this yeas was also the CSIRO documents, which
is introduced in Section 4.2.2. In 2008, 77 different topics are provided in the
file “08.topics.CE051-CE127.txt”. Actually, the topics here were developed in
conjunction with CSIRO Enquiries, who filled email and telephone questions
about CSIRO research from the public [7].

Overview of Participants’ Approaches in 2008

In 2008, eleven participants submitted 42 expert search runs, including 32 au-
tomatic runs using only query field, 7 automatic runs using the narr field in
addition to the query and manual runs. Among all the approaches explored
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Run Group Type Fields MAP MRR
UvA08ESweb UAmsterdam auto q 0.4490 0.8721
ICTI3Sexp01 CAS auto q 0.4214 0.7241

uogTrEXfeNPC UGlasgow auto q 0.4126 0.7611
FDURoleRes Fudan auto qn 0.4114 0.7516

THUPDDlchrS Tsinghua auto q 0.3846 0.7419
WHU08NOPHR Wuhan auto q 0.3826 0.6770

utqurl UTwente auto q 0.3728 0.7647
UCLex04 UC-London auto q 0.3476 0.6759
DERIrun3 NUI-Galway auto q 0.2619 0.6212
LiaIcExp08 UAvingon manual qn 0.2513 0.8545
pristask204 BUPT manual qn 0.0977 0.2343

Table 4.5: Best results of each participant in 2008

this year, the group UAmsterdam used a combination of three models and a
query extension method. CAS applied the PageRank algorithm on a recom-
mendation network of persons. UGlasgow adopted the Voting Model with a
proximity-based variation. Fudan used two models and Tsinhua introduced a
combination of two methods like UTwente. A probability based query extension
method was used by Wuhan. UC-London used a document-centric generative
method. NUI-Galway adopted the genetic programming for ranking. UAvingon
employed baseline Indri retrieval and query refinement for automatic and man-
ual runs. The evaluation results of each group are provided in Table 4.5. Among
all the runs, the run “UvA08ESweb” executed by UAmsterdam got first prize
when ranking them by MAP. Accoriding to the table, we can find that methods
using only queries got better performance than methods using query and narr,
and automatic runs outweighed manual runs this year in general, which was
opposite to the runs in 2007.

4.2.4 Document-object Association

The 2007 Enterprise Track also requires the participating organisation to extract
email addresses. These email address are used in Expert Search experiments [4].
In file “csiro mapping.list”, the email addresses for all experts are provided. In
expert search, every expert is related to different documents. To score all the
experts, the association of documents for each expert should be known. The file
“csiro assoc.list” provides all the expert associations of documents.
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Quantity Value
First Feed Crawl 06/12/2005
Last Feed Crawl 21/02/2006

Number of Feeds Fetches 753681
Number of Permalinks 3215171
Number of Homepages 324880

Table 4.6: Statistics of Blog06

4.3 Blog Distillation and Test Collection

4.3.1 Blog Distillation

Blogs are web logs created by individuals. They are always published with
timestamps and shown in the way of flashback. Blogger have various focuses,
and blogs could be with different themes. Some blogs comment on news and
events, some may provides experience on a specific field, like making up, pictur-
ing, music, etc, and some blogs may only be used for self-expression, like diaries.
A standard blog is a combination of word, pictures, links to other blogs and com-
ment space for interaction between reader and author. Reader could subscribe
to bloggers with great interest and continuous attention. With the increasing
popularity of blogs, the amount of blogs are becoming even more huge. Consid-
ering the size of blogosphere and growing interest in the information available
inside, the effective and efficient ways to access blogs are needed [53]. Normally,
we could access blogs by the blog posts, which are some key words or short
descriptions on blogs, or the blog itself by indexing. Blog distillation is created
to access the target blogs effectively and efficiently and becomes a useful task
among the blogosphere. The task of blog distillation was first introduced in the
TREC 2007 Blog track [11]. It aims to rank blogs, which means aggregation of
blog posts [32].

4.3.2 Test Collection in 2007

Blog Test Collection

The test collection of blog data was created for the purposes of Blog track [31]
with real blogs from Internet. Besides, the blogs should be representative and
avoid spam. University of Glasgow created a test collection called Blog06, which
will be used in this project. The Blog06 covers 100649 blogs spanning from
December 2005 to February 2006 and its statistics is shown in table 4.6.

The Blog06 was well accepted and widely used in research for different tasks.
In 2006, the Blog06 had two main tasks, the opinion retrieval task and an open
task. In 2007, also two tasks, an opinion polarity subtask and blog distillation
task, were involved with the Blog06 collection. In 2008, with the same test
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collections, tasks like baseline adhoc retrieval task, opinion-finding retrieval task,
polarity opinion-finding retrieval task and blog distillation task were carried out
then. To be noted that, the collection of Blog06 was created in 2006 and the
blog distillation task was introduced and carried out in 2007 and 2008.

Blog Distillation Topics

Blog distillation is kind of an open task under discussion, which was mentioned
in 2006 track. To evaluate the effectiveness of blog distillation, topics are needed.
As a matter of fact, in 2007, the topics used for blog distillation were provided
by the participants. 45 topics were determined as selections by NIST from
the topic collection, which was created by all the participants. Actually, every
participant was asked to create some topics and finally, eight groups provided
with 5 to 7 topics individually. Below a topic example in 2007 was provided.
Similar to federated search and expert search, the topic in blog distillation has
the same structure including topic, narr, ect.

<top>  

<num> Number: 994 </num>  

<title> formula f1 </title>  

<desc> Description:  

Blogs with interest in the formula one (f1) motor racing, perhaps with driver news, team news, or 

event news.  

</desc>  

<narr> Narrative:  

Relevant blogs will contain news and analysis from the Formula f1 motor racing circuit. Blogs 

with documents not in English are not relevant.  

</narr>  

</top> 

Figure 4.3.1: Topic example of blog distillation in 2007

Overview of Blog Distillation Approaches in 2007

The task of blog distillation was first introduced in 2007. In that year, nine
participants ran their approaches over Blog06. The main difference between
their approaches lies on indexing and retrieval methods. The Carnegie Mel-
lon University (CMU) adopted a large document model and a small document
model for indexing. A query expansion method with Wikipedia was adopted
as retrieval method. Permalink component indexing was used by University of
Glasgow (UoG). University of Massachusetts (UMass) adopted language mod-
elling methods. Also, some other methods were experimented by participants
like University of Amsterdam (UvA), Kobe University, University of Texas’
School of Information (UT), etc.
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Group Run MAP R-prec b-Bref
CMU(Callan) CMUfeedW 0.3695 0.4245 0.3861

UGlasgow(Ounis) uogBDFeMNZP 0.2923 0.3654 0.3210
UMass(Allen) UMaTiPCSwGR 0.2529 0.3334 0.2902
KobeU(Seki) kudsn 0.2420 0.3148 0.2714

DalianU(Yang) DUTDRun1 0.2285 0.3105 0.2768
UTexas-Austin(Efron) utblnrr 0.2197 0.3100 0.2649
UAmsterdam(deRijke) uams07bdtblm 0.1605 0.2346 0.1820

WuhanU(Lu) TDWHU200 0.0135 0.0419 0.0297

Table 4.7: Blog distillation results of title-only run in 2007

When only title was indexed for query, the results of all participants are
shown in the table 4.7. It is clear that the run “CMUfeedW” conducted by
CMU got best result according to the parameter of MAP. And other results
from different participants could also seen in table 4.7 [11].

4.3.3 Test Collection in 2008

Blog Distillation Topics in 2008

The blog test collection used in 2008 is also Blog06, which is introduced in
Section 4.3.2. Similar to that in 2007, the topics were also provided by par-
ticipants. However, the requirements of topic selection became more strict in
this year. The reason to this change lies that the topics in 2007 were too gen-
eral to differentiate relevant blogs. Finally, 50 topics were selected from a topic
set of 66 records with each participant providing 4 to 5 topics. To make blog
distinguishing more accurate, a four-point scale was provided.

Overview of Participants Approaches in 2008

This year, 11 participants got involved in the exploration. Except CMU and
DUTIR, all other teams only indexed the permalink component from the test
collection. To be noted, the WHU team used two indexing methods for eval-
uation. With more attention on expert search techniques, this year, the idea
of expert search was implemented for blog ranking by treat each blog as a unit
entity. In specific, UAms, UoGtr and USI adopted this idea. Also, some other
methods like query expansion was adopted by WHU.

Similarly, a result table is also provided here to show the performance of the
participants’ approaches. Among all the teams, KLE got best result according
to nDCG [32].
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Group Run nDCG MAP R-prec bPref
KLE KLEDistLMT 0.5324 0.3015 0.3601 0.3580

CMU-LTI-DIR cmuLDwikiSP 0.5170 0.3056 0.3646 0.3535
UAms De Rijke uams08bl 0.4904 0.2638 0.3137 0.3024

uMass UMassBlog1 0.4777 0.2520 0.3077 0.2944
UoGtr uogTrBDfeNWD 0.4758 0.2521 0.3121 0.2932

KobeU-Seki kudb 0.4712 0.2422 0.2947 0.2903
SUNY Buffalo UBDist1 0.4694 0.2410 0.2916 0.2855

USI BM25LenNorm 0.4663 0.2566 0.3144 0.2882
WHU PermMeWhu 0.4023 0.1898 0.2591 0.2451

feup irlab feupbase 0.3478 0.1413 0.1890 0.1690
iitkgp FEEDKGP 0.3397 0.1539 0.2146 0.1916

DUTIR DUTIR08DRun1 0.3370 0.1600 0.2293 0.2054

Table 4.8: Blog distillation results of run in 2008
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Chapter 5

Results and Analysis

In this chapter, we will introduce how the two fusion models are implemented
with test collections for experiments. After carefully analyzing the experiment
results, the research questions will well be answered.

5.1 Model Implementation

With large scale test collections for testing, the document-centric and object-
centric fusion retrieval models are implemented in Python 2.7 for experiments.
Python is a great script tool for text mining. It is able to process large scale
texts fast with a few line of programs. Abundant API dealing with big data
enable Python implementation to get rid of extra operations.

As introduced in Chapter 2, all the text collections are to be processed
before being mined. Normally, the pre-processing steps includes tokenization,
stopwords removal and stemming. Then, all documents will be indexed for
searching. In our pre-processing stage, only tokenization is conducted. Be-
cause all the documents are stored in some specific types, we firstly separate all
documents by their tags, then use the API of “BeautifulSoup” to extract the
document id, title and content for each document. After storing all the docu-
ments separately, the indexing work is to be conducted. In our indexing, the
index API from Whoosh is used. Whoosh is a Pythonic API with extraordinary
indexing and searching speed. It has great framework including scoring modu-
lar, storing modular, separating words modular, ect. It also supports spelling
check and language query services. When using Whoosh to index documents, a
particular Schema is adopted with document content defined. In our Schema,
the document id, title and content are set to store and index documents. To
include all the documents, the writer() method of the indexing object enables us
to add documents continuously. After indexing all the documents, the strategy
models are to be implemented. The implementations of document-centric and
object-centric are exactly following the pseudo codes provided in Chapter 3. To
be noted that, the field length, document length, term frequency in document
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and field information are needed for probability calculation. All these statistics
are collected by Whoosh. Actually, when the data collection is GigaByte level,
the statistic speed of Whoosh is very fast. Additionally, our python programs
and implementations are well explained in Appendix.

5.2 Results

Because the test collection for blog search has not arrived before the submission
deadline for this thesis, the task of blog distillation is left for further research.
Thus, we report results on four test collections: TREC Federated Search 2013
and 2014, and TREC Expert Search 2007 and 2008. Each test collection con-
sists of a document collection, a set of test queries and relevance judgements,
which is introduced in Chapter 4. In each search task, two document-object
association estimations, which are introduced in Section 3.4, are implemented.
A set of queries is provided for each test collection. The output for each query
is standardized, which is a top 100 ranked list by likelihood probabilities with
query id, object, rank and likelihood probability as content. Figure 5.2.1 is a
ranked list of example of federated search 2014 for a query with only top 10
presented. After outputting the ranked list, the output files are compared with
ground truth to evaluate how the retrieval documents match the information
needs. The ground truth always provides each query with the needed document
ranked list. When comparing output file with ground truth, we can see whether
the needed documents are returned with a good rank. The ground truth is also
standardized with the format of query id and object. When compare the output
file and ground truth, different methods mentioned in section 2 like MAP, P@N,
etc, are adopted to evaluate effectiveness and efficiency of the retrieval methods.

7015 Q0 FW14-e119 1 5.77500930048 Document_Centric 

7015 Q0 FW14-e032 2 3.25929586027 Document_Centric  

7015 Q0 FW14-e085 3 3.10594508748 Document_Centric  

7015 Q0 FW14-e166 4 2.85491173463 Document_Centric  

7015 Q0 FW14-e126 5 1.77607988355 Document_Centric  

7015 Q0 FW14-e185 6 1.70500591849 Document_Centric  

7015 Q0 FW14-e037 7 1.4750771363 Document_Centric  

7015 Q0 FW14-e140 8 1.18819362406 Document_Centric  

7015 Q0 FW14-e086 9 0.995007609485 Document_Centric  

7015 Q0 FW14-e182 10 0.930003381993 Document_Centric 

Figure 5.2.1: Output example of federated search in 2014

Table 5.1 lists the results of expert search in 2007 and 2008 with two P (d|o)
estimations. In this table, P1 stands for the case that P (d|o) equals to 1 and
P2 refers that P (d|o) is 1

len(o) . As mentioned in last section, the Mean Aver-
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2007 2008
MAP MRR P@10 MAP MRR P@10

OC P1 0.3026 0.3859 0.1400 0.2463 0.4144 0.2473
OC P2 0.3521 0.4567 0.1320 0.2974 0.5507 0.2709

DC P1 0.2855 0.3707 0.1360 0.2522 0.4285 0.2582
DC P2 0.2537 0.3248 0.1080 0.1932 0.3631 0.2036

Table 5.1: Expert finding results

2013 2014
MAP P@5 P@10 MAP P@5 P@10

OC P1 0.3222 0.4000 0.4100 0.3649 0.4320 0.4360
OC P2 0.2663 0.3320 0.3340 0.3098 0.3280 0.3380

DC P1 0.2611 0.2920 0.2700 0.3326 0.3880 0.3760
DC P2 0.2304 0.2640 0.2240 0.2763 0.3160 0.2860

Table 5.2: Federated Search Results

age Precision and P@N are the parameters to be considered mostly for result
evaluation. MAP, short for Mean Average Precision, is calculated by mean all
Average Precisions of expert search queries in the same year. P@n and MRR
(mean reciprocal rank) are also calculated by average. It is obvious that, for
expert search task, the P2 outweighs P1 generally in object-centric implemen-
tation because except P@10, all parameters of P2 are greater that of P1. In
document-centric model, the results are opposite. All parameters in P1 are
greater than that in P2. When comparing object-centric model with document-
centric model, the cases of P1 and P2 are discussed separately. In the case of
P1, the parameters of object-centric and document-centric are quite close since
OC outweighs DC in expert search 2007 and DC outweighs OC in expert search
2008. In the case of P2, the OC, short for object-centric model, outweighs
document-centric model. Table 5.2 demonstrates the results of federated search
in 2013 and 2014 with two P (d|o) estimations, which are noted as P1 and P2
here. We can see that for object-centric model, the case of P1 is superior to
that of P2 with all larger MAP and P@n in both the two years. The same
situation occurs in document-centric model with the better MAP and P@n in
P1 than P2. Different from expert search, the object-centric model precedes
document-centric model in federated search. For a better knowledge of strategy
performance, the following section will introduce the comparative analysis on
these results.
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OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
CE-042 5 0.4472 5 0.5 0.4 0.0000 0 0 0 0.4472
CE-014 2 1.0000 2 1 0.2 0.5833 2 0.5 0.2 0.4167
CE-047 3 0.4322 3 1 0.1 0.0667 1 0.2 0.1 0.3655
. . . . . . . . .
CE-006 4 0.2900 4 0.5 0.3 0.5821 4 1 0.4 -0.2921
CE-032 11 0.1786 9 0.2 0.3 0.5959 9 1 0.5 -0.4173
CE-046 4 0.3119 4 0.3333 0.3 0.7679 4 1 0.4 -0.4560
Mean 0.3026 0.3859 0.1400 0.2855 0.3707 0.1360 0.0171

Table 5.3: Average Precision of expert queries in 2007
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Figure 5.2.2: ∆AP (OC-DC) in expert search 2007

5.2.1 Estimation One: P (d|o) = 1

In this section, the analysis on expert search and federated search results are
given when P (d|o) = 1, which is the first probability estimation. Table 5.3 gives
the Average Precision of OC and DC models for queries in expert search 2007.
∆AP equals to AP of OC minus AP of DC, and is used for ranking with decreas-
ing trend. In this table, the top three and bottom three ∆AP are provided with
specific query number, AP, MRR, P@10, #rel and #rel ret. The #rel refers to
the number of relevant documents, which is calculated based on ground truth
file. The #rel ret is the number of relevant and retrieval documents, which are
retrieved by our search tasks. The #rel ret being close to #rel means most
of the relevant documents are retrieved by our models in top 100 ranked list.
Generally, the larger #rel ret means greater retrieval effectiveness. If the re-
trieval and relevant documents are placed in high ranks, the retrieval efficiency
is satisfying. The ranking efficiency can be evaluated by P@n and MRR, which

41



OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
103 6 0.8833 6 1 0.6 0.2759 6 0.3333 0.3 0.6074
118 6 0.4634 5 1 0.4 0.0651 4 0.0455 0 0.3983
67 11 0.2455 10 0.3333 0.3 0.0152 1 0.1667 0.1 0.2303
. . . . . . . . .
73 7 0.2378 5 0.5 0.2 0.4869 6 1 0.3 -0.2491
75 20 0.5387 10 0.1250 0.3 0.4405 17 1 0.6 -0.4321
62 19 0.0296 7 0.25 0.1 0.5304 18 0.3333 0.7 -0.5008
Mean 0.2463 0.4144 0.2473 0.2522 0.4285 0.2582 -0.0059

Table 5.4: Average Precision of expert queries in 2008

are to be talked later.
Figure 5.2.2 shows the decreased ∆AP distribution with queries. In expert

search 2007, the query “CE-042”, which refers to the first column from left
in figure 5.2.2, is on top of the ∆AP rank because the #rel ret in OC is five
and that in DC is 0. The query “CE-014” shares similar reason of a relatively
worse retrieval results in DC models. The query “CE-014” is ranked number
two, though DC and OC both fully retrieved the relevant documents. When
checking the result statistics, we may find that MRR in OC is 1 and in DC the
MRR is 0.5. It means that the OC places the relevant documents in a higher and
better ranks. The OC and DC obtain the same number of relevant documents
in all the worse three queries. Taking query “CE-032” as an example, the P@10
in DC and OC are 0.5 and 0.3 respectively, indicating that in top ten retrieved
documents there are five and two relevant documents included. As a result,
the MRR oc DC and OC of query “CE-32” are 0.2 and 1, showing DC has a
better ranking performance than OC. By overview of areas upper and below
the query axis in figure 5.2.2, we can obviously find the DC and OC has quite
close performance in expert search 2007, and in table 5.3 the MAP of OC is
only lightly greater than that of DC.

Table 5.4 gives the Average Precision of OC and DC models for queries in
expert search 2008. In this table, the top three and bottom three ∆AP are
provided with specific query number, AP, MRR, P@10, #rel and #rel ret. The
query “103” has greatest ∆AP because the MRR and P@10 in OC are 1 and
0.6 against 0.3333 and 0.3 in DC. It means that the top 10 retrieval documents
contain 6 relevant documents in OC and 3 in DC. Meanwhile, the greater MRR
in OC demonstrates a better ranks for relevant documents, leading a higher
effciency. The reason that Query “118” and “67” are on top three can be
explained by the advantages on #rel ret. Similarly, OC performs worse than DC
when searching “116”, “126” and “72” with less relevant documents retrieved in
their ranking lists. Similarly, figure 5.2.3 shows the decreased ∆AP distribution
of all queries. According to this figure, we can find the performances of DC and
OC in expert search 2008 are similar, although DC outweighs OC slightly.

Table 5.5 gives the Average Precision of OC and DC models for queries
in federated search 2013. In this table, the top three and bottom three ∆AP
are provided with specific query number, AP, MRR, P@10, #rel and #rel ret.
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Figure 5.2.3: ∆AP (OC-DC) in expert search 2008

OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7127 10 0.6862 10 0.8 0.7 0.0871 10 0 0 0.5991
7087 20 0.4538 17 0.6 0.5 0.1413 17 0 0 0.3125
7258 13 0.3518 11 0.4 0.6 0.1345 11 0 0.1 0.2173
. . . . . . . . .
7047 25 0.1803 18 0 0.1 0.2148 18 0.4 0.3 -0.0345
7103 41 0.3877 35 0.4 0.6 0.4405 36 0.4 0.5 -0.0528
7040 10 0.2480 10 0.4 0.2 0.3227 10 0.4 0.2 -0.0747
Mean 0.3222 0.4 0.41 0.2611 0.2920 0.2700 0.0611

Table 5.5: Average Precision of federated queries in 2013

Correspondingly, figure 5.2.4 illustrates the decreased ∆AP distribution of all
queries. Five of the six queries listed in this table can not be deduced by their
#rel ret as they have the same numbers in both DC and OC. Checking the
result statistics, we can find that the P@5 and P@10 of query “7127” in OC are
0.8 and 0.7 against 0 and 0 in DC. It indicates that the top five retrieved lists
includes 4 relevant documents and in top ten there are seven using OC model.
However, lists in DC do not contain any relevant documents. The reasons for
query “7087” and “7258” are the same. It is noted that these three queries
are lying at the most left part in figure 5.2.4. Oppositely, OC performs worse
than DC for query “7047”,“7103” and “7040”. Taking “7103” as an example
for analysis, the #rel ret in DC is greater than that in OC, which means a more
effective retrieval. Generally, the OC outweighs DC in federated search 2013
according to figure 5.2.4 with more queries owning greater AP.

Table 5.6 gives the Average Precision of OC and DC models for queries
in federated search 2014. In this table, the top three and bottom three ∆AP
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Figure 5.2.4: ∆AP (OC-DC) in federated search 2013

OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7491 24 0.4956 22 0.4 0.5 0.2851 22 0 0.2 0.2105
7441 28 0.5369 25 0.6 0.7 0.3598 25 0.2 0.5 0.1771
7303 20 0.5367 20 0.6 0.6 0.3830 20 0.4 0.4 0.1537
. . . . . . . . .
7230 13 0.1270 11 0.2 0.1 0.2343 11 0.4 0.2 -0.1073
7265 16 0.1199 12 0 0.1 0.2317 12 0.2 0.3 -0.1118
7200 21 0.2147 16 0 0.3 0.3646 16 0.8 0.4 -0.1499
Mean 0.3649 0.4320 0.4360 0.3326 0.3880 0.3760 0.0323

Table 5.6: Average Precision of federated queries in 2014

are provided with specific query number, AP, MRR, P@10, #rel and #rel ret.
Correspondingly, figure 5.2.5 illustrates the decreased ∆AP distribution of all
queries. According to this figure, DC performs a bit worse than OC in general
because more queries have larger AP than DC. The six queries listed in this
table can not be deduced by their #rel ret as they have the same numbers in
both DC and OC. The P@5 and P@10 of query “7491” in OC are 0.4 and 0.5
against 0 and 0.2 in DC, indicating a higher retrieval efficiency in top five and
top ten ranked lists. “7441” and “7303” also have better efficiency in OC. DC
searches better for query “7200”,“7265” and “7230” than OC. Taking “7200”
as an instance, the P@5 and P@10 in DC are 0.8 and 0.4 while 0 and 0.3 in
OC. Data indicates that in top 5 retrieval lists, there are four and zero relevant
documents included by DC and OC respectively.

To further display the retrieval efficiency of OC and DC model, figure 5.2.6
and 5.2.7 are given to show the histrogram of the four search tasks in OC and
DC models. Normally, P@10 ranges from 0 to 1 with 0.1 as a unit. P@10 is
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Figure 5.2.5: ∆AP (OC-DC) in federated search 2014

an efficiency parameter because it actually is the percentage of retrieval and
relevant documents out of the top 10 retrieved documents. If we consider 0.5 of
P@10 is a threshold of great retrieval efficiency, which means top 10 ranked list
contain five relevant documents, OC model performs a little bit well than DC
when considering both expert and federated search, though their performances
are quite close.

5.2.2 Estimation Two: P (d|o) = 1
len(o)

In this section, the analysis on expert search and federated search results are
given when P (d|o) = 1

len(o) . Table 5.7 gives the Average Precision of OC and
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Figure 5.2.6: P@10 histrogram of all
object-centric implementations
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Figure 5.2.7: P@10 histrogram of all
document-centric implementations
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OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
CE-009 1 1.0000 1 1 0.1 0.1250 1 0.1250 0.1 0.8750
CE-010 1 1.0000 1 1 0.1 0.2000 1 0.2 0.1 0.8000
CE-007 1 1.0000 1 1 0.1 0.5000 1 0.5 0.1 0.5000
. . . . . . . . .
CE-006 4 0.0250 1 0.1 0.1 0.0644 4 0.0833 0 -0.0394
CE-037 5 0.3636 5 1 0.3 0.4167 4 0.5 0.3 -0.0531
CE-023 2 0.0417 1 0.0833 0 0.2101 2 0.3333 0.1 -0.1684
Mean 0.3521 0.4567 0.1320 0.2537 0.3248 0.1080 0.0984

Table 5.7: Average Precision of expert queries in 2007
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Figure 5.2.8: ∆AP (OC-DC) in expert search 2007

DC models for queries in expert search 2007. Here, ∆AP equals to AP of
OC minus AP of DC, and is used for ranking. In this table, the top three and
bottom three ∆AP are listed with specific query number, AP, MRR, P@10, #rel
and #rel ret. Figure 5.2.8 shows the decreased ∆AP distribution of all queries
from expert search 2007. According to this figure, ∆AP are mostly positive,
indicating the search advantage of OC over DC. The queries of “CE-009”, “CE-
010” and “CE-007” have the three largest ∆AP among all queries. Because all
the #rel and #rel ret are 1, the ranks of the relevant documents affect heavily
on the result. The MRR of “CE-009” in OC is 1 while the MRR is 0.125 in DC,
which indicates a better rank from OC. The same situation occurred on “CE-
010” and “CE-007”. DC searches more effectively for “CE-006” and “CE-023”
than OC because more relevant documents are retrieved and more efficiently for
query “CE-037”.

Table 5.8 demonstrates the Average Precision of OC and DC models for
queries in expert search 2008. In this table, the top three and bottom three ∆AP
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OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
96 2 1.0000 2 1 0.2 0.0000 0 0 0 1.0000
103 6 0.4815 6 0.3333 0.5 0.0340 3 0.0385 0 0.4475
64 10 0.8022 9 1 0.7 0.3550 4 1 0.4 0.4472
. . . . . . . . .
80 28 0.2036 16 0.5 0.4 0.3120 24 0.5 0.4 -0.1084
62 19 0.1391 15 0.0526 0 0.3415 16 0.25 0.4 -0.2024
82 2 0.5833 2 0.5 0.2 0.8333 2 1 0.2 -0.2500
Mean 0.2974 0.5507 0.2709 0.1932 0.3631 0.2036 0.1042

Table 5.8: Average Precision of expert queries in 2008
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Figure 5.2.9: ∆AP (OC-DC) in expert search 2008

are provided with specific query number, AP, MRR, P@10, #rel and #rel ret.
Figure 5.2.9 shows the decreased ∆AP distribution of all queries from expert
search 2008. According to this figure, ∆AP are mostly positive, indicating the
search advantage of OC over DC. Queries of “96”, “103” and “64” are on top
three according to the ∆AP. It is apparent that OC retrieved more relevant
and retrieved documents than DC for these three queries, which means higher
effectiveness of OC. Queries of “80”, “62” and “82” have lowest three ∆AP
among all the queries. DC achieved higher retrieval effectiveness for query “80”
and “62” than OC with larger #rel ret numbers. As for query “82”, the MRR
in OC is 0.5 while 1 in OC, which means a better efficiency with good ranks for
relevant documents.

Table 5.9 demonstrates the Average Precision of OC and DC models for
queries in federated search 2013. In this table, the top three and bottom three
∆AP are provided with specific query number, AP, MRR, P@10, #rel and
#rel ret. Figure 5.2.10 shows the decreased ∆AP distribution of all queries
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OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7127 10 0.4065 10 0.4 0.5 0.0777 10 0 0 0.3288
7087 20 0.4023 17 0.6 0.5 0.1255 17 0 0 0.2768
7406 32 0.4343 26 0.8 0.7 0.2367 26 0.4 0.2 0.1976
. . . . . . . . .
7001 36 0.2936 31 0.4 0.3 0.3319 33 0 0 -0.0383
7084 26 0.1731 19 0.2 0.3 0.2117 19 0.4 0.3 -0.0386
7004 25 0.0995 16 0 0 0.1578 21 0 0 -0.0583
Mean 0.2663 0.3320 0.3324 0.2304 0.2640 0.2240 0.0358

Table 5.9: Average Precision of federated queries in 2013
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Figure 5.2.10: ∆AP (OC-DC) in federated search 2013

from federated search 2013. According to this figure, ∆AP are mostly positive,
indicating the search advantage of OC over DC. Queries of “7127”, “7087” and
“7406” have the greatest ∆AP with better ranking situation in OC. Queries of
“7001”, “7084” and “7004” have the smallest ∆AP with better ranking situation
in DC. As for “7004”, DC achieves larger #rel ret, leading the advantage over
OC by better effectiveness.

Table 5.10 demonstrates the Average Precision of OC and DC models for
queries in federated search 2014. In this table, the top three and bottom three
∆AP are provided with specific query number, AP, MRR, P@10, #rel and
#rel ret. Figure 5.2.11 shows the decreased ∆AP distribution of all queries
from federated search 2014. Queries of “7441”, “7491” and “7211” are top three
regarding ∆AP. To be noted that, though DC has slightly greater #rel ret on
“7441”, the P@5 and P@10 of DC are 0 and 0.2 while 0.8 and 0.6 in OC, that
is to say, OC outweighs by a higher efficiency. Queries of “7265”, “7200” and
“7299” share the bottom three ∆AP. The #rel ret are the same in OC and DC,
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OC DC
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7441 28 0.4643 24 0.8 0.6 0.2388 25 0 0.2 0.2255
7491 24 0.4465 22 0.2 0.5 0.2302 22 0 0.1 0.2163
7211 51 0.6045 44 0.8 0.7 0.4378 44 0.6 0.6 0.1667
. . . . . . . . .
7265 16 0.1178 12 0 0 0.2037 12 0.4 0.2 -0.0859
7200 21 0.1842 16 0 0.3 0.3096 16 0.6 0.4 -0.1254
7299 24 0.2679 21 0 0 0.3963 24 0.4 0.6 -0.1284
Mean 0.3098 0.3280 0.3380 0.2763 0.3160 0.2860 0.0336

Table 5.10: Average Precision of federated queries in 2014
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Figure 5.2.11: ∆AP (OC-DC) in federated search 2014

but DC has higher efficiency for these queries, for example, the P@5 and P@10
of “7299” are 0.4 and 0.6 in DC against 0 and 0, which indicates more relevant
documents are retrieved by DC in ranked lists.

To further display the retrieval efficiency of OC and DC model, figure 5.2.12
and 5.2.13 are given to show the histrogram of the four search tasks in OC and
DC models in the second P (d|o) estimation. Normally, P@10 ranges from 0
to 1 with 0.1 as a unit. P@10 is an efficiency parameter because it actually
is the percentage of retrieval and relevant documents out of top 10 retrieval
documents. If we think 0.5 of P@10 is a threshold of great retrieval efficiency,
which means top 10 ranked list contain five relevant documents, DC model
performs very close to OC when considering both expert and federated search.
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Figure 5.2.12: P@10 histrogram of all
object-centric implementations
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Figure 5.2.13: P@10 histrogram of all
document-centric implementations

P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
CE-014 2 1.0000 2 1 0.2 0.5000 2 0.5 0.2 0.5000
CE-020 2 0.5833 2 0.5 0.2 0.1917 2 0.25 0.1 0.3916
CE-018 3 0.5074 3 1 0.3 0.1653 3 0.3333 0.1 0.3421
. . . . . . . . .
CE-025 1 0.0000 0 0 0 0.5000 1 0.5 0.1 -0.5000
CE-030 2 0.3250 2 0.25 0.2 1.0000 2 1 0.2 -0.6750
CE-009 1 0.2000 1 0.2 0.1 1.0000 1 1 0.1 -0.8000
Mean 0.3026 0.3859 0.14 0.3521 0.4567 0.1320 -0.0495

Table 5.11: Average Precision of object centric for expert queries in 2007
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Figure 5.2.14: ∆AP (P1-P2) of object-centric model in expert search 2007

5.2.3 Comparison between Estimation One and Estima-
tion Two

In this section, we would compare the results using different estimating prob-
abilities to explore the effect of P (d|o) in expert search and federated search.
The analysis method is similar to the previous sections considering MAP and
P@10 mostly to evaluate both the effectiveness and efficiency of search tasks.

Table 5.11 gives the Average Precision of OC models using two estimation
probabilities for queries in expert search 2007. Here, ∆AP equals to AP of case
P (d|0) = 1 minus AP of case P (d|o) = 1

len(o) , and is used for query ranking. In

this table, the top three and bottom three ∆AP are provided with specific query
number, AP, MRR, P@10, #rel and #rel ret. The #rel refers to the number
of relevant documents, which is calculated based on ground truth file. The
#rel ret is the number of relevant and retrieval documents, which are retrieved
by our search tasks. Figure 5.2.14 shows the decreased ∆AP distribution with
queries. According to this figure, the case of P (d|o) = 1

len(o) has better search

performance than that when P (d|o) = 1 because more ∆AP are negative. The
top three queries of “CE-014”, “CE-020” and “CE-18” have the same #rel ret
numbers in two estimation implementations. However, taking “CE-014” as an
example, the MRR of P1 is 1 while 0.5 of P2, which shows a better ranking
situation. “CE-030” and “CE-009” are on the bottom with the same numbers
of relevant documents retrieved by P1 and P2. However, P2 achieved higher
efficiency for these two queries. P1 searched worse for ”CE-025” than P2 with
less relevant documents retrieved.

Table 5.12 gives the Average Precision of DC models using two estima-
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P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
CE-002 2 1.0000 2 1 0.2 0.4167 2 0.5 0.2 0.5833
CE-018 3 0.6667 3 1 0.3 0.1299 3 0.25 0.1 0.5368
CE-046 4 0.7679 4 1 0.4 0.2395 4 0.25 0.2 0.5284
. . . . . . . . .
CE-035 2 0.3409 2 0.5 0.1 0.7000 2 1 0.2 -0.3591
CE-025 1 0.0769 1 0.0769 0 0.5000 1 0.5 0.1 -0.4231
CE-030 2 0.3250 2 0.25 0.2 1.0000 2 1 0.2 -0.6750
Mean 0.2855 0.3707 0.1360 0.2537 0.3248 0.1080 0.0984

Table 5.12: Average Precision of document centric for expert queries in 2007
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Figure 5.2.15: ∆AP (P1-P2) of document-centric model in expert search 2007

tion probabilities for queries in expert search 2007. Here, ∆AP equals AP of
P (d|0) = 1 minus AP of P (d|o) = 1

len(o) , and is used for ranking. In this table,

the top three and bottom three ∆AP are provided with specific query number,
AP, MRR, P@10, #rel and #rel ret. Figure 5.2.15 shows the decreased ∆AP
distribution with queries. According to this figure, the case of P (d|o) = 1

len(o)

has worse search performance than that when P (d|o) = 1 because more ∆AP
are positive. The top three query of “CE-002”, “CE-018” and “CE-46” have
the same #rel ret numbers in two estimation implementations. However, taking
“CE-002” as an example, the MRR of P1 is 1 while 0.5 of P2, which shows a
better ranking situation. “CE-025”, “CE-030” and “CE-035” are on the bottom
with same relevant documents retrieved. The MRR of “CE-035” of P1 is 0.5 and
1 of P2, causing a relatively high efficiency by P2. The reasons for “CE-025”
and “CE-030” are the same.

Table 5.13 gives the Average Precision of OC models using two estimation

52



P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
82 2 1.0000 2 1 0.2 0.5833 2 0.5 0.2 0.4167
103 6 0.8833 6 1 0.6 0.4815 6 0.3333 0.5 0.4018
124 4 0.9167 4 1 0.4 0.5845 4 0.5 0.4 0.3322
. . . . . . . . .
126 1 0.0000 0 0 0 0.5000 1 0.5 0.1 -0.5000
78 1 0.5000 1 0.5 0.1 1.0000 1 1 0.2 -0.5000
96 2 0.1325 2 0.1111 0.1 1.0000 2 1 0.2 -0.8675
Mean 0.2463 0.4144 0.2473 0.2974 0.5507 0.2709 -0.0511

Table 5.13: Average Precision of object centric for expert queries in 2008
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Figure 5.2.16: ∆AP (P1-P2) of object-centric model in expert search 2008

probabilities for queries in expert search 2008. Here, ∆AP is used for ranking.
In this table, the top three and bottom three ∆AP are provided with specific
query number, AP, MRR, P@10, #rel and #rel ret. Figure 5.2.16 shows the
decreased ∆AP distribution with queries. According to this figure, the case
of P (d|o) = 1

len(o) has better search performance than that when P (d|o) = 1

because more ∆AP are negative. The top three query of “82”, “103” and “124”
have the same #rel ret numbers in two estimation implementations. However,
taking “82” as an example, the MRR of P1 is 1 while 0.5 of P2, which shows a
better ranking situation. “78” and “96” are on the bottom with less retrieved
efficiency by P1, but “126” is on the bottom because a lower effectiveness in P1.

Table 5.14 gives the Average Precision of DC models using two estimation
probabilities for queries in expert search 2008. Here, ∆AP is used for ranking.
In this table, the top three and bottom three ∆AP are provided with specific
query number, AP, MRR, P@10, #rel and #rel ret. Figure 5.2.17 shows the
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P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
73 7 0.4869 6 1 0.3 0.1314 6 0.2 0.1 0.3555
77 30 0.5679 27 0.5 0.8 0.2863 19 0.25 0.5 0.2816
117 6 0.4591 6 0.3333 0.4 0.2047 6 0.25 0.2 0.2544
. . . . . . . . .
60 12 0.2080 8 0.2 0.3 0.3930 8 1 0.4 -0.1850
97 8 0.1158 5 0.1 1 0.3889 5 1 0.5 -0.2731
78 1 0.5000 1 0.5 0.1 1.0000 1 1 0.1 -0.5000
Mean 0.2522 0.4285 0.2582 0.1932 0.3631 0.2036 0.0591

Table 5.14: Average Precision of document centric for expert queries in 2008
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Figure 5.2.17: ∆AP (P1-P2) of document-centric model in expert search 2008

decreased ∆AP distribution with queries. According to this figure, the case
of P (d|o) = 1

len(o) has worse search performance than that when P (d|o) = 1

because more ∆AP are positive. The top three queries are “73”, “77” and
“117”. “73” and “117” have higher efficiency in P1 than P2, and “117” has
higher effectiveness by P1 because of a larger #rel ret. “60”, “97” and “78” are
the least three queries in this table. They all have lower efficiency in P1 than
in P2.

Table 5.15 gives the Average Precision of OC models using two estimation
probabilities for queries in federated search 2013. Here, ∆AP is used for ranking.
In this table, the top three and bottom three ∆AP are provided with specific
query number, AP, MRR, P@10, #rel and #rel ret. Figure 5.2.18 shows the
decreased ∆AP distribution with queries. Different from previous situation, P1
here totally outweighs P2 with all ∆AP non-negative. The top three queries are
“7127”, “7129” and “7132”. “7127” and “7129” have higher efficiency in P1 than
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P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7127 10 0.6862 10 0.8 0.7 0.4065 10 0.4065 0.4 0.2797
7129 15 0.3736 14 0.4 0.6 0.1899 14 0.2 0.1 0.1837
7132 13 0.3439 12 0.6 0.5 0.2048 11 0.2 0.2 0.1391
. . . . . . . . .
7056 29 0.1691 19 0.4 0.2 0.1691 19 0.4 0.2 0.0000
7076 29 0.2033 18 0.4 0.2 0.2033 18 0.4 0.2 0.0000
7089 17 0.1097 9 0.2 0.1 0.1097 9 0.2 0.1 0.0000
Mean 0.3222 0.4000 0.4100 0.2663 0.3320 0.3324 0.0559

Table 5.15: Average Precision of object-centric for federated queries in 2013
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Figure 5.2.18: ∆AP (P1-P2) of object-centric model in federated search 2013

P2, and “7132” has higher effectiveness because of a larger #rel ret. “7056”,
“7076” and “7089” are the least three queries in this table. The ∆AP are all
zero in these cases, meaning that the ranked list about relevant documents are
the same in the two implementations.

Table 5.16 gives the Average Precision of DC models using two estimation
probabilities for queries in federated search 2013. Here, ∆AP is used for ranking.
In this table, the top three and bottom three ∆AP are provided with specific
query number, AP, MRR, P@10, #rel and #rel ret. Figure 5.2.19 shows the de-
creased ∆AP distribution with queries. Generally speaking, P1 here outweighs
P2 as all ∆AP non-negative with only two exceptions of “7109” and “7506”.
The top three queries are “7504”, “7040” and “7080”. “7504” and “7040” have
higher efficiency in P1 than P2, and “7080” has higher effectiveness because of
a larger #rel ret. “7089”, “7109” and “7506” are the least three queries in this
table. The ∆AP of “7089” is zero, meaning that the ranked list about relevant
documents are the same in the two implementations. “7109” and “7506” have
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P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7504 15 0.3994 14 0.2 0.4 0.2410 14 0.2 0.1 0.1584
7040 10 0.3227 10 0.4 0.2 0.2074 10 0.4 0.2 0.1153
7080 9 0.1629 9 0.2 0.1 0.0846 8 0 0.1 0.0783
. . . . . . . . .
7089 17 0.1391 9 0.2 0.1 0.1391 9 0.2 0.1 0.0000
7109 13 0.1601 10 0.2 0.2 0.1604 10 0.4 0.2 -0.0003
7506 15 0.2286 14 0.2 0.4 0.2438 14 0.4 0.2 -0.0152
Mean 0.2611 0.2920 0.2700 0.2304 0.2640 0.2240 0.0307

Table 5.16: Average Precision of document-centric for federated queries in 2013
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Figure 5.2.19: ∆AP (P1-P2) of document-centric model in federated search 2013

worse efficiency in P1 than P2 with same numbers of retrieved documents.
Table 5.17 gives the Average Precision of OC models using two estimation

probabilities for queries in federated search 2014. Here, ∆AP is used for ranking.
In this table, the top three and bottom three ∆AP are provided with specific
query number, AP, MRR, P@10, #rel and #rel ret. Figure 5.2.20 shows the
decreased ∆AP distribution with queries. Similar to last case, P1 here outweighs
P2 as all ∆AP non-negative with only two exceptions of “7167” and “7161”.
The top three queries are “7299”, “7123” and “7044”. They all have higher
efficiency in P1 than P2, though “7044” has lower effectiveness in P1 with a
smaller #rel ret. “7501”, “7167” and “7161” are the least three queries in this
table. The ∆AP of “7501” is zero, meaning that the ranked list about relevant
documents are the same in the two implementations. “7167” and “7161” have
worse efficiency in P1 than P2 with same numbers of retrieved documents.

Table 5.18 gives the Average Precision of DC models using two estimation
probabilities for queries in federated search 2014. Here, ∆AP is used for ranking.
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P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7299 24 0.4701 21 0.4 0.7 0.2679 21 0 0 0.2022
7123 19 0.4660 19 0.4 0.5 0.3306 19 0.2 0.2 0.1354
7044 51 0.5236 46 0.6 0.9 0.3939 44 0.4 0.4 0.1297
. . . . . . . . .
7501 7 0.0336 3 0 0 0.0336 3 0 0 0.0000
7167 30 0.4964 29 0.8 0.5 0.4983 29 0.8 0.6 -0.0019
7161 28 0.3626 25 0.8 0.5 0.3850 25 0.6 0.5 -0.0224
Mean 0.3649 0.4320 0.4360 0.3099 0.3280 0.3380 0.0550

Table 5.17: Average Precision of object-centric for federated queries in 2014
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Figure 5.2.20: ∆AP (P1-P2) of object-centric model in federated search 2014

In this table, the top three and bottom three ∆AP are provided with specific
query number, AP, MRR, P@10, #rel and #rel ret. Figure 5.2.21 shows the
decreased ∆AP distribution with queries. Similar to OC in federated search
2013, P1 here totally outweighs P2 with all ∆AP non-negative. The top three
queries are “7299”, “7137” and “7441”. They all have higher efficiency in P1
than P2 with the same numbers of #rel ret. “7194”, “7236” and “7501” are
the least three queries in this table. The ∆AP are all zero in these cases,
meaning that the ranked list about relevant documents are the same in the two
implementations.
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P1 P2
Query id #rel AP #rel ret MRR P@10 AP #rel ret MRR P@10 ∆AP
7299 24 0.5553 24 0.8 0.8 0.3963 24 0.4 0.6 0.1590
7137 41 0.5870 39 0.8 0.7 0.4520 38 0.8 0.5 0.1350
7441 28 0.3598 25 0.2 0.5 0.2388 25 0 0.2 0.1210
. . . . . . . . .
7194 16 0.1725 9 0.4 0.5 0.1725 9 0.4 0.5 0.0000
7236 25 0.1567 19 0.2 0.1 0.1567 19 0.2 0.1 0.0000
7501 7 0.0336 3 0 0 0.0336 3 0 0 0.0000
Mean 0.3326 0.3880 0.3760 0.2763 0.3160 0.2860 0.0563

Table 5.18: Average Precision of document-centric for federated queries in 2014
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Figure 5.2.21: ∆AP (P1-P2) of document-centric model in federated search 2014

5.2.4 Summary of Findings

After analyzing the results of two fusion strategies in different use cases, we get
excellent knowledge on these methods. Afterwards, table 5.19 and table 5.20
are created to give more general comparisons between OC and DC, as well P1
and P2. In these tables, ≈ means the performances are similar, > indicates
an superior performance and � means a great advantage. Table 5.21 lists the
information related to document-object association. In this table, #o refers to
the number of objects, #d-o means the total number of documents these objects
are associated with and avg(#d-o) is the average number of documents that one
object is associated with.

In table 5.19, it is clear that OC and DC have similar performances on
expert search 2007 and expert search 2008 in the case of P1. However, in P2,
OC gains great advantage over DC in both of the test collections. Actually, the
only difference between these two cases is the probability of P (d|o). In table
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Expert 2007 Expert 2008 Federated 2013 Federated 2014
P1 OC ≈ DC OC ≈ DC OC > DC OC > DC
P2 OC � DC OC � DC OC > DC OC > DC

Table 5.19: Overall comparison between OC and DC

Expert 2007 Expert 2008 Federated 2013 Federated 2014
OC P1 > P2 P1 > P2 P1 > P2 P1 > P2
DC P1 > P2 P1� P2 P1 > P2 P1 > P2

Table 5.20: Overall comparison between P1 and P2

5.21, we find that the average number of documents that an expert is associated
with is 68, leading a smaller P (d|o) than 1 in P1. By comparing these two case,
we can conclude that taking the length of document-object association into
consideration contributes to the object-centric model enhanced expert search.
To make this conclusion more accurate, we can explore the effects on federated
search. In table 5.19, we find that in both P1 and P2, the performances of OC
are general better than that of DC, and their performances between federated
2013 and federated 2014 are extremely similar, demonstrating the little effect
of document-object association. Actually, the avg(#d-o) of federated 2013 and
federated 2014 are 12570 and 24272, which are quite huge numbers leading
much smaller probabilities of P (d|o). Therefore, when the document-object
association is proper, which is not too small nor too large, it is better to take
P2 into consideration for the object-centric model enhanced expert search.

In table 5.20, we can find the overall advantage of P1 over P2. The biggest
difference occurs on expert 2008 using document-centric model, which is noted
with �. Actually, the superiority achieved by P1 in OC is larger than in DC,
although the biggest advantage is gained by DC. When comparing the Equation
3.1 and Equation 3.3, along with Section 3.3, we can find that the collection
probability accounts less proportion in OC than in DC. As a matter of fact, the
λ in these equation is set to 0.1 and affect the proportions of object probability
and collection probability as well. As a result, we may predict that between OC
and DC, a smaller proportion of collection probability leads to a better and more
stable performance. Besides, different λ could be set to different fusion methods
to maximize the search performance. The exploration on the selection of λ can
be researched in the future. As for the expert 2008 in P2, we can compare expert
2007 and expert 2008 for reasons. Because the document-object associations are
exactly the same in expert 2007 and expert 2008, the only difference is the set
of queries. As a result, the results should be caused by the selection of queries.
Actually, in blog distillation 2007, because the queries are not well selected, the
ranked results based on fusion methods were not effective, which is mentioned
in Section 4.3.3. Therefore, the queries also affect the performances.
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Expert 2007&2008 Federated 2013 Federated 2014
#o 3479 157 149

#d-o 236594 1973591 3616551
avg(#d-o) 68 12570 24272

Table 5.21: Statistics on document-object associations

Concerning the research questions given in Section 1.2.1, the answers are
provided here.

• RQ1: When fusion is needed for information retrieval, which fusion method
between early fusion and late fusion is better?

• A1: In this project, the object-centric model is the early fusion strategy
and the document-centric model is the late fusion strategy. After imple-
menting the two models in federated search and expert search, we find
that the performances of OC and DC are quite close and really depending
on data sets. However, generally speaking, the object-centric model out-
performs document-centric model slightly because OC scores all relevant
documents in a early stage to ensure a tighter association between object
and documents.

• RQ2: When estimating document-collection associations, diverse methods
could be used. Among these methods, which estimation method performs
the best?

• A2: We conduct two different document-collection association estimating
methods for every search task in federated search and expert search. The
first estimation gives every document binary weight, regarding all docu-
ments the same. The second estimation gives every document within a
object uniform weight. Thus, the probability of associated document is
shown below.

P (d|o) =

{
1, Estimation1

1
len(o) , Estimation2

(5.1)

According to the results of these two estimations, we can find that, in
expert search, the performances of these two estimations are extremely
similar, however, in federated search, the estimation one gets overall ad-
vantage against estimation two. This is because, when the documents
associated with an object are too many, the P (d|o) becomes to small to
get all scores too close to rank.
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Chapter 6

Conclusion and Future
Work

As an information retrieval system, web search engine now is largely depending
on fusion different sources for search tasks. With multiple sources, it is efficient
to pick out the most relevant ones to turn to for query. Fusion methods contain
the task to rank the sources by their relevance with queries. Normally, there are
two ways to fuse sources, one strategy is “early” fusion and the other is “late”
fusion. Fusion strategies could be implemented using methods like language
modeling, machine learning, etc. In this project, two fusion strategies including
early fusion called object-centric model and later fusion called document-centric
model under the language modeling framework are tested in different search
tasks, including expert search and federated search. Besides, two document-
object association estimations are implemented and compared. In general, the
performances of document-centric and object-centric are quite close and largely
depend on the data sets and estimations.

Because of the delay of blog distillation data set, the testing on this search
task is under execution. In the future, we will implement object-centric and
document-centric models for blog distillation tasks and compare the results with
other search tasks when blog distillation data sets are available.

Both object-centric and document-centric models are using the language
modeling framework. In the future, a more general pair of early and late fusion
strategies is to be put forward to include other scoring methods like IF-DTF,
BM25, etc.
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Appendix A

Description on Model
Implementation Programs

As introduced in section 5.1, the object-centric and document-centric models are
implemented in Python 2.7. The test collections used are federated search 2013,
federated search 2014, expert search 2007 and expert search 2008 respectively. In
each case, we test two different document-object association estimations. In our
implementation, the following four folders store all the programs corresponding
to four test collections.

• code expert 2007

• code expert 2008

• code federated 2013

• code federated 2014

In each folder, we all have six python programs to execute pre-processing,
indexing and scoring tasks. They are marked as follows. Here, E1 stands for
document-object association estimation one and E2 stands for document-object
association estimation two.

• 01 pre processing.py

• 02 indexing.py

• 03 model implementation E1.py

• 04 generate file E1.py

• 05 model implementation E2.py

• 06 generate file E2.py
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In each case, the py files of 01, 02, 03 and 04 are associated with Estimation
one and 01, 02, 05 and 06 are with Estimation two. Running the programs in
sequence will cover the two estimations.

To further display the implementations, we would introduce them by tasks.
As all the four implementations are quite similar, we take federated search 2014
as an example and give specific descriptions.

A.1 Preprocessing

The preprocessing work by 01 pre processing.py mainly deals with the formation
of data set, like extracting the evaluation queries, mapping the document-object
associations, etc. For example, the function in 01 pre processing.py of federated
search 2014 is used to extract the evaluating queries by tags and store the queries
in dictionary with query id as key and query as value.

Extract Query

de f queryExtract ( i npu t d i r ) :
DATA=os . path . j o i n ( os . path . dirname ( f i l e ) , i n pu t d i r )
que ry d i c t = {}
f o r i n p u t f i l e in so r t ed ( os . l i s t d i r (DATA) ) :

f i l e p a t h = ”{}/{}”. format ( input d i r , i n p u t f i l e )
f = open ( f i l e p a t h )
whi l e True :

l i n e = f . r e ad l i n e ( )
i f not l i n e :

break
i f ’ t op i c eva luat ion ’ in l i n e :

currentID = l i n e . s p l i t ( ) [ 2 ] [ −5 : −1 ]
e l i f ’ query ’ in l i n e :

cur r ent que ry =
re . sub(”<query>|</query>|\n” ,”” , l i n e . s t r i p (” ” ) )
que ry d i c t [ currentID ] = cur r ent que ry

f o r key in so r t ed ( que ry d i c t ) :
p r i n t key , que ry d i c t [ key ]

r e turn que ry d i c t

The input files of the 01 pre processing.py are

• Folder: eval topic\FW14-topic-evaluation-TREC.txt

• Folder: Topic\FW-topics.xml

The out files are

• eval topic key.pckl

• topic dict.pckl
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A.2 Indexing

In indexing modular, we would extract all the documents first and then index
them using Whoosh.

Extract docs and associations

de f e n g i n e a s s o c i a t i o n ( i npu t d i r ) :
DATA=os . path . j o i n ( os . path . dirname ( f i l e ) , i n pu t d i r )
e n g i n e i d a s s o c i a t i o n d i c t = {}
docs = [ ]
f o r i n p u t f i l e in so r t ed ( os . l i s t d i r (DATA) ) :

i d l i s t = [ ]
p r i n t s t r ( i n p u t f i l e [ 0 : 4 ] )
f i l e p a t h = ”{}/{}”. format ( input d i r , i n p u t f i l e )
f = open ( f i l e p a t h )
soup = Beaut i fu lSoup ( f )
f o r sn ippe t s in soup . f i n d a l l ( ’ sn ippet ’ ) :

key = sn ippe t s . get ( ’ id ’ )
i d l i s t . append ( key )
t ry :

t i t l e = sn ippe t s . t i t l e . t ex t
except :

t i t l e = ’ ’
t ry :

contents = sn ippe t s . d e s c r i p t i o n . t ex t
except :

contents = t i t l e
docs . append ({ ’ id ’ : key ,
’ t i t l e ’ : t i t l e , ’ content ’ : contents . encode (” utf −8”)})

e n g i n e i d a s s o c i a t i o n d i c t [ i n p u t f i l e [ 0 : 4 ] ] = i d l i s t
r e turn docs , e n g i n e i d a s s o c i a t i o n d i c t

The folder FW14-sample-search includes 149 XML files containing the sam-
pled documents by each search engine, as a result, we are supposed to get
the document-object association (engine id association) manually. However,
in expert search, the document-object association is provided in files. By the
function of engine association, we separate each document and store them by
id, tile and content using the API of BeautifulSoup. At the same time, the
document-object associations are obtained, which is a dictionary stored in file
of engine id association dict.pckl.

We use the API of Whoosh to index all the documents. In the schema, we
take id, title and content as fields. To get the content, only tokenization is
executed. To be noted that, in the program of create index, the write() method
of the index object returns an IndexWriter object that lets us add documents to
the index. All the indexed fields must be passed a unicode value. The fields can
be left empty, i.e., we don’t have to fill in a value for every fields. The indexing
files are stored in the folder of index doc id. Additionally, the task may take
several hours to finish.

Index

de f c r e a t e i nd ex ( docs , i ndex d i r , ana ly s e r=None ) :

70



schema = Schema( id=ID( s to r ed=True ) ,
t i t l e=TEXT, content=TEXT( ana lyze r=ana lyser , s t o r ed=True ) )
i f not os . path . e x i s t s ( i nd ex d i r ) :

os . mkdir ( i nd ex d i r )
i x = index . c r e a t e i n ( index d i r , schema )
wr i t e r = ix . wr i t e r ( )
i = 1
f o r doc in docs1 :

t ry :
w r i t e r . add document (
id=doc [ ’ id ’ ] . decode ( ) , t i t l e=doc [ ’ t i t l e ’ ] . decode ( ) ,
content=doc [ ’ content ’ ] . decode (” utf −8”))
l og (” Indexed document {} out o f {}”
. format ( i , numDocuments ) )
i += 1

except Exception as e :
l og (”Could not index document with ID {} : {}”
. format ( id , e )

wr i t e r . commit ( )

The input files of 02 indexing.py are

• Folder: FW-sample-search(144 XML files)

The output files of 02 indexing.py are

• Folder: index doc id

• engine id association dict.pckl

A.3 Scoring

The scoring modular corresponds to the file of 03 model implementation E1.py
and 05 model implementation E2.py. The implementation class is shown in the
program.

Implementation class

c l a s s MyBaseScorer ( ob j e c t ) :
de f i n i t ( s e l f , i nd ex d i r ) :

s e l f . index = index . open d i r ( i nd ex d i r )
s e l f . r eader = s e l f . index . r eader ( )

# Score a g iven term in a given document
de f s co r e t e rm dc ( s e l f , f i e l d , t , f tq , f td , doc len ) :

r a i s e NotImplementedError ( s e l f . c l a s s . name )
de f s co r e t e rm oc ( s e l f , f i e l d , t , f tq , q len ) :

r a i s e NotImplementedError ( s e l f . c l a s s . name )
de f s c o r e o c ( s e l f , query , f i e l d ) :
# Score a l l documents
de f s c o r e d c ( s e l f , query , f i e l d ) :
de f c l o s e ( s e l f ) :

s e l f . r eader . c l o s e ( )
s e l f . index . c l o s e ( )
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The object-centric model and document-centric model are implemented follow-
ing the pseudo codes in Chapter 3. We take object-centric model as an example
to give the program. Whoosh provides great assistance to query the index.
Therefore, we use Whoosh to get the term frequency in document, term fre-
quency in field (content), document length and field length.

Scoring modular in OC

de f s co r e t e rm oc ( s e l f , f i e l d , t , f tq , q len ) :
p t d l i s t = {}
psum = {}
pr = s e l f . r eader . po s t i ng s ( f i e l d , t )
whi l e pr . i s a c t i v e ( ) :

docnum = pr . id ( ) # docnum i s the i n t e r n a l (Whoosh) docID
i f docnum not in p t d l i s t :

p t d l i s t [ docnum ] = 0
f td = pr . va lu e a s (” f requency ”)
doc len = s e l f . r eader . d o c f i e l d l e n g t h (docnum , f i e l d )
ptd = f td / doc len
p t d l i s t [ docnum]= ptd

pr . next ( )
p t d l i s t o c = {}
f o r docnum in p t d l i s t . keys ( ) :

s t o r ed = s e l f . r eader . s t o r e d f i e l d s (docnum)
doc = s t r ( s to r ed [ ’ id ’ ] )
p t d l i s t o c [ doc ] = p t d l i s t [ docnum ]

# s t o r e sum( ptd∗pdc ) f o r each ob j e c t
p t o l i s t = {}
# i n i t i a l i z e the ob j e c t s c o r e s
f o r i in o b j e c t l i s t . keys ( ) :

p t o l i s t [ i ] = 0
a = s e l f . r eader . f requency ( f i e l d , t )
b = s e l f . r eader . f i e l d l e n g t h ( f i e l d )
ptc = a / b
f o r inde in o b j e c t l i s t . keys ( ) :

f o r docnum in o b j e c t l i s t [ inde ] :
t ry :

p t o l i s t [ inde]+=p t d l i s t o c [ docnum ]
except :

p t o l i s t [ inde ]+=0
psum [ inde ] = math . l og ( (1 − s e l f . lambd )∗ p t o l i s t [ inde ]
+s e l f . lambd ∗ ptc ) ∗ f t q
re turn psum

def s c o r e o c ( s e l f , query , f i e l d ) :
qt = Counter ( query )
q len = len ( query )
p q c l i s t = {}
pr in t ”OC ing ”
f o r i in o b j e c t l i s t . keys ( ) :

p q c l i s t [ i ] = 0
f o r t , f t q in qt . i t e r i t em s ( ) :

i f s e l f . r eader . f requency ( f i e l d , t ) == 0 :
p r i n t ”Query term ” , t , ” ignored ”
cont inue

psum = s e l f . s c o r e t e rm oc ( f i e l d , t , f tq , q len )
f o r i nd i in o b j e c t l i s t . keys ( ) :

p q c l i s t [ i nd i ] = p q c l i s t [ i nd i ] + psum [ i nd i ]
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The input files of 03 model implementation.py and 05 model implementation.py
are

• eval topic key.pckl

• engine id association dict.pckl

• topic dict.pckl

• Folder: iindex doc id

The output files of 03 model implementation E1.py are

• querykey pqclist dc E1.pckl

• querykey pqclist oc E1.pckl

The output files of 05 model implementation E2.py are

• querykey pqclist dc E2.pckl

• querykey pqclist oc E2.pckl

A.4 Output File Generation

After storing all P (q|o) in querykey pqclist dc(oc) E1(E2).pckl, we could gen-
erate the output file containing top 100 ranks for all topics, as shown in figure
5.2.1.

Ranks of DC

f = open ( ’ que rykey pqc l i s t dc E1 . pckl ’ )
qu e ryk ey pqc l i s t d c = p i c k l e . load ( f )
f . c l o s e ( )
pqc l i s t d c m inu s e = {}
f o r key1 in p q c l i s t d c . keys ( ) :

i f p q c l i s t d c [ key1 ] < 0 :
pqc l i s t d c m inu s e [ key1 ] = pq c l i s t d c [ key1 ]

d c l i n = heapq . n l a r g e s t (100 , p q c l i s t d c . i tems ( ) , key=i t emge t t e r ( 1 ) )
i f l en ( d c l i n )<100:

l e e = len ( d c l i n )
e l s e :

l e e = 100
i = 0
f o r i in range ( l e e ) :

o u t f i l e d c . wr i t e ( key + ” Q0 ” + ’FW14−’+d c l i n [ i ] [ 0 ] +’ ’+
s t r ( i +1)+’ ’ +s t r ( d c l i n [ i ] [ 1 ] )+ ’ ’+ ’ Document Centric ’ + ”\n”)
p r i n t key + ” Q0 ” + ’FW14−’+d c l i n [ i ] [ 0 ] +’ ’+
s t r ( i +1)+’ ’ +s t r ( d c l i n [ i ] [ 1 ] )+ ’ ’+ ’ Document Centric ’ + ”\n”
i+=1
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This program shows how DC generate output ranked file. In case some objects
are not associated with over 100 documents, we set the ranked length manually.

The input files of 04 generate file E1.py are

• eval topic key.pckl

• topic dict.pckl

• querykey pqclist dc E1.pckl

• querykey pqclist oc E1.pckl

The output files of 04 generate file E1.py are

• dc 2014 E1.pckl

• oc 2014 E1.pckl

Similarly, the input files of 06 generate file E2.py are

• eval topic key.pckl

• topic dict.pckl

• querykey pqclist dc E1.pckl

• querykey pqclist oc E1.pckl

The output files of 06 generate file E2.py are

• dc 2014 E2.pckl

• oc 2014 E2.pckl

Other search tasks are experimented similarly, so we are not intended to intro-
duce them in detail.

A.5 Evaluation

After acquiring the output files, we could compare them with ground truth for
evaluation. The ground truth files of the four tasks are shown below.

• Expert search 2007: 07.qrel.expert.qids

• Expert search 2008: 08.expert.qrels

• Federated search 2013: FW13-QRELS-RS.txt

• Federated search 2014: FW14-QRELS-RS.txt

With the evaluation folder of trec eval.9.0, we could compare our output file
with ground truth, e.g.,

• \trec eval FW14-QRELS-RS.txt dc 2014 E1.txt

in UNIX. To get more knowledge on the evaluation results, we could command,
for example,

• \trec eval -q FW14-QRELS-RS.txt dc 2014 E1.txt | more

74


