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ABSTRACT
Tables are an extremely powerful visual and interactive tool for
structuring and manipulating data, making spreadsheet programs
one of the most popular computer applications. In this paper we in-
troduce and address the task of recommending related tables: given
an input table, identifying and returning a ranked list of relevant ta-
bles. One of the many possible application scenarios for this task is
to provide users of a spreadsheet program proactively with recom-
mendations for related structured content on the Web. At its core,
the related table recommendation task boils down to computing
the similarity between a pair of tables. We develop a theoretically
sound framework for performing table matching. Our approach
hinges on the idea of representing table elements in multiple seman-
tic spaces, and then combining element-level similarities using a
discriminative learning model. Using a purpose-built test collection
from Wikipedia tables, we demonstrate that the proposed approach
delivers state-of-the-art performance.
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1 INTRODUCTION
Tables are an extremely powerful visual and interactive tool for
structuring and manipulating data. �e Web contains vast amounts
of HTML tables [17] and there is a growing body of research utiliz-
ing relational information stored in them [6, 10, 16, 30, 43]. Table
retrieval has been recognized as an important search task [9, 27, 42].
In this paper, we propose and address the task of recommending
related tables: given an input relational table, identify and return a
ranked list of relevant tables that contain novel information (addi-
tional entities and/or a�ributes). �e main di�erence from previous
work is that instead of requiring the user to express her information
need explicitly, by formulating a keyword query, we can proactively
recommend related tables based on any existing table as input. �is
input table may be an incomplete table the user currently works
on or a complete table that can be found on the Web. Figure 1
illustrates the idea. Table recommendations could be helpful, for
example, in equipping spreadsheet applications with a smart as-
sistance feature for �nding related content. Alternatively, it could
be implemented as a browser plugin that can be activated upon
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Figure 1: �e task of related table recommendation is to re-
turn a ranked list of tables, given an input table.

encountering a table on a webpage to �nd related tables (e.g., for
comparison or fact validation).

At its core, the related table recommendation task boils down
to computing a similarity score between a pair of tables, the input
and candidate tables, which we shall refer to as table matching. We
note that table matching is a core component in many other table-
related tasks beyond search and recommendation, such as table
augmentation [1, 12, 18, 37], question answering on tables [27], and
table interpretation [6, 35]. Previous approaches may be divided
into two main categories: (i) extracting a keyword query from
certain table elements and scoring candidate tables using that query,
e.g., [1, 18] (ii) spli�ing both the query and candidate tables into
several elements and performing element-wise matching, e.g., [12,
25, 37]. Commonly considered table elements include table caption,
table entities, column headings, and table data (cell values).

Existing approaches for table matching su�er from three main
shortcomings. First, they rely on ad hoc similarity measures, tailor-
made for each table element. Second, even though multiple table
elements (caption, column headings, cell values, etc.) have been
considered, a principled way of combining these element-level
similarities is lacking, along with a systematic assessment of the
contribution of the various table elements in such a combination.
�ird, the possibility of matching elements of di�erent types has
not been explored yet (e.g., comparing the input table’s headers
against the candidate table’s cell values). Motivated by the above
issues, our the main research objective is to develop an e�ective
and theoretically sound table matching framework for measuring
and combining table element level similarity, without resorting
to hand-cra�ed features. We propose an element-oriented table
matching framework that hinges on the idea of representing table
elements in multiple semantic spaces. We develop multiple meth-
ods for measuring the similarity between table elements; these are
applicable to both elements of the same type (element-wise match-
ing) and of di�erent types (cross-element matching). Finally, we
combine element-level similarities using a discriminative learning
approach. �rough our experimental evaluation, we seek to answer
the following speci�c research questions:



RQ1 Which of the semantic representations (word-based, graph-
based, or entity-based) is the most e�ective for modeling
table elements?

RQ2 Which of the two element-level matching strategies performs
be�er, element-wise or cross-element?

RQ3 How much do di�erent table elements contribute to recom-
mendation performance?

For experimental evaluation, we develop a test collection based on
Wikipedia tables. We �rst present a feature-based method that com-
bines numerous hand-cra�ed element-level similarity measures
from the literature in a discriminative learning approach. �is
method, referred to as HCF, improves over the best existing base-
line method by almost 30% in terms of NDCG@10. We then show
that our proposed novel approach, termed CRAB, based on element-
level semantic representations and matching, performs on par with
this strong combination of hand-cra�ed features. Our analysis re-
veals that cross-element matching, while seemingly unintuitive, can
indeed be bene�cial. We further demonstrate that recommendation
performance increases as the input table grows, either horizontally
or vertically, which a�ests to the capability of our table matching
framework to e�ectively utilize larger inputs. In summary, this
paper makes the following contributions:

• We introduce and address the related table recommenda-
tion task, adapt existing methods, and present a discrimi-
native approach that combines hand-cra�ed features from
the literature (Sect. 2).

• We develop a general a table matching framework and
speci�c instantiations of this framework (Sect. 3).

• We construct a purpose-built test collection (Sect. 4), per-
form a thorough experimental evaluation, and provide
valuable insights and analysis (Sect. 5).

�e resources developed within this paper will be made publicly
available upon acceptance.

2 USING HAND-CRAFTED FEATURES
We present an approach, termed HCF, which combines various table
similarity measures from the literature in a feature-based ranking
framework. Additionally, we introduce a set of features to describe
the input and candidate tables on their own. As we will show
in our experimental section, this approach outperforms the best
method from the literature by almost 30%. �erefore, even though
the individual features are not regarded as novel, the rich feature
set we introduce here does represent an important contribution.

2.1 Recommender Framework
�e objective of table matching is to compute the similarity between
an input table T̃ and a candidate table T , expressed as score(T̃ ,T ).
Formally, our goal is to learn a recommender model h(T̃ ,T ) =
h(xT̃ ,T ) that gives a real-valued score for an input and candidate
table pair, or equivalently, to the corresponding feature vector xT̃ ,T .
�e feature vector is de�ned as:

xT̃ ,T =
〈
ϕ1(T̃ ), . . . ,ϕn (T̃ ), (1)
ϕn+1(T ), . . . ,ϕ2n (T ),

ϕ2n+1(T̃ ,T ), . . . ,ϕ2n+m (T̃ ,T )
〉

Table 1: Table similarity features. All values are in [0, 1].

Element / Feature Source

Page title (T̃p ↔ Tp )
InfoGather page title IDF similarity score [37]

Table headings (T̃H ↔ TH )
MSJE heading matching score [18]
Schema complement schema bene�t score [12]
InfoGather heading-to-heading similarity [37]
Nguyen et al. heading similarity [25]

Table data (T̃D ↔ TD )
InfoGather column-to-column similarity [37]
InfoGather table-to-table similarity [37]
Nguyen et al. table data similarity [25]

Table entities (T̃E ↔ TE )
Entity complement entity relatedness score [12]
Schema complement entity overlap score [12]

�ere are two main groups of features. �e �rst 2n features are
based on the characteristics of the input and candidate tables, re-
spectively (n features each). �ese features are discussed in Sect. 2.3.
�en,m features are used for representing the similarity between a
pair of tables; these are described in Sect. 2.2.

2.2 Table Similarity Features
On the high level, all the existing methods operate by (i) subdi-
viding tables into a number of table elements, such as page title
(Tp ), table caption (Tc ), table topic (Tt ), column headings (TH ), ta-
ble entities (TE ), and table data (TD ), (ii) measuring the similarity
between various elements of the input and candidate tables, and
(iii) combining these element-level similarities into a �nal score.
We adapt all element-level similarity scores from the individual
methods (detailed in Sect. 5.1) as table similarity features. �ese
are shown in Table 1, grouped by table elements.

2.3 Table Features
Additionally, we present a set of features that characterize individ-
ual tables. Table features are computed for both the input and can-
didate tables. �ey might be thought of as analogous to the query
and document features, respectively, in document retrieval [20].
In fact, we adapt some features from document retrieval, such as
query IDF score [28]. Speci�cally, we compute IDF for the table
caption and page title elements, by summing up the term IDF scores:
IDF (f ) =

∑
t ∈f IDF (t). We further consider general table descrip-

tors from [5], like the number of table rows, columns, and empty
cells. Another group of features is concerned with the page in which
the table is embedded. �e includes page connectivity (inLinks and
outLinks), page popularity (page counts), and the table’s importance
within the page (tableImportance and tablePageFraction). Table 2
provides an overview of table features.

3 THE CRAB APPROACH
�is section presents our novel approach for table matching. Our
contributions are twofold. We introduce a general element-oriented
table matching framework in Sect. 3.1 followed by speci�c instanti-
ations of this framework, referred to as CRAB, in Sect. 3.2.
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3.1 Element-Level Table Matching Framework
We combine multiple table quality indicators and table similarity
measures in a discriminative learning framework. Input and candi-
date table pairs are described as a feature vector, shown in Eq. (1).
�e main novelty lies in how table similarity is estimated. Instead of
relying on hand-cra�ed features, like the ones presented in Sect. 2,
we represent table elements in a uniform manner. Moreover, in-
stead of relying of lexical matches, we perform the matching of
table elements in multiple semantic spaces.

Let T̃yx1 denote element x1 of the input table T̃ in representation
space y. Similarly, let Tyx2 denote element x2 of the candidate table
T in representation space y. We then take table similarity features
to be element-level matching scores:

ϕi (T̃ ,T ) = sim(T̃yx1,T
y
x2) ,

where i ∈ [2n + 1, 2n +m] and sim() is a similarity function. Impor-
tantly, these similarity functions are applicable both to elements of
the same type (x1 = x2), referred to as element-wise matching (e.g.,
caption vs. caption, headings vs. headings, etc.) and to elements of
di�erent types (x1 , x2), referred to as cross-element matching (e.g.,
caption vs. headings or headings vs. data). Next, we present various
ways of representing table elements (Sect. 3.1.1), and measuring
element-level similarity (Sect. 3.1.2).

3.1.1 Representing Table Elements. Each table element, Tx , is
represented both in a term space and in a semantic space. We start
with the former one. Tx is described as a weighted vector of terms,
where terms may be words or entities. Formally, Tx = [t1, . . . , tN ],
where ti corresponds to the weight of the ith term in the vocabulary.
For words, the vocabulary is the set of unique words in the table
corpus, for entities it is the set of entries in a knowledge base. We
also represent each table element in a semantic space. Given a
semantic space y, each term ti is described by a corresponding
embedding vector, tyi . �e space of embeddings may be words,
entities, or graphs (cf. Sect. 3.2.1).

In summary, each table element is represented in the term space
by a term vector Tx, and each term ti ∈ Tx is represented by a
semantic vector tyi . Note that the term space serves only as an
intermediate representation, to help map table elements to seman-
tic space y. �e subsequent element-level matching will only be
performed in this semantic space. See Fig. 2 for an illustration.

3.1.2 Measuring Element-level Similarity. We estimate the sim-
ilarity between two table elements, T̃x1 and Tx2 , based on their
semantic representations. Notice that these semantic representa-
tions (that is, the embedding vectors tyi ) are on the term level and

Table 2: Table features.

Feature Description Source

#rows Number of rows in the table [5, 9]
#cols Number of columns in the table [5, 9]
#of NULLs Number of empty table cells [5, 9]
IDF(Tc ) Table caption IDF [28]
IDF(Tp ) Table page title IDF [28]
inLinks Number of in-links to the page embed-

ding the table
[5]

outLinks Number of out-links from the page em-
bedding the table

[5]

pageViews Number of page views [5]
tableImportance Inverse of number of tables on the page [5]
tablePageFraction Ratio of table size to page size [5]
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Figure 3: Illustration of element-level similarity methods.

not on the element level. �us, the term embedding vectors need
to be aggregated on the element level. Inspired by our previous
work [2], we present four speci�c element-level similarity methods.
�ese are roughly analogous to the early and late fusion strategies
in [34, 40]. We refer to Fig. 3 for an illustration.

One strategy, referred to as early fusion, represents each table
elementTx in semantic space y by combining the term-level seman-
tic vectors to a single element-level semantic vector, Cyx . We take
the weighted centroid of term-level semantic vectors:

Cyx [i] =

∑N
j=1 tj × t

y
j [i]∑N

j=1 tj
,

where [i] refers to the ith element of the vector. �en, the similarity
of two table elements is taken to be the cosine similarity of their
respective centroid vectors:

simear ly (T̃x1 ,Tx2 ) = cos(Cyx1,C
y
x2) .

According to another strategy, referred to as late fusion, we �rst
compute the cosine similarities between all pairs of semantic vec-
tors. �en, these term-level similarity scores are aggregated into
an element-level score:

simlate (T̃x1 ,Tx2 ) = aggr({cos(t1, t2) : t1 ∈ T̃
y
x1 , t2 ∈ T

y
x2 }) ,

where aggr() is an aggregation function. Speci�cally, we use max(),
sum(), and avg() as aggregation functions.

3.2 CRAB
We detail a speci�c instantiation of our framework, which includes
the representation of table elements (Sect. 3.2.1) and the element-
level similarity scores that are used as ranking features (Sect. 3.2.2).



3.2.1 Representing Table Elements. We split tables into the fol-
lowing elements and represent them in (at most) two term spaces,
words and entities, as follows:

• Table headings (TH ) Table headings are represented only
as words, since entity occurrences in headings are ex-
tremely rare. If case entities appear in headings, we assign
them to the table data element.

• Table data (TD ) �e contents of table cells are used both as
words and as entities. For the la�er, entity mentions need
to be recognized and disambiguated; such annotations be
made readily available as markup (e.g., in Wikipedia ta-
bles) or may be obtained automatically using entity linking
techniques [33].

• Table topic (Tt ) For simplicity, we combine table caption
and page title into a single table topic element. We can
directly use this text for representing the table topic in the
word space. To obtain entities for the table topic, we use
the table topic text as a search query to retrieve the top-k
relevant entities from a knowledge base. Speci�cally, we
employ the MLM [15] retrieval method with k = 10.

• Table entities (TE ) Many relational tables have a core
entity column [6, 35], while the rest of columns represent
a�ributes of those entities. For this table element we only
keep entities from the table’s core column, i.e., the column
with the highest entity rate. We estimate entity rate by
calculating the number of column cells that contain an
entity and divide it by the number of rows.

We consider three semantic spaces for representing table elements:
word, entity, and graph embeddings. �ese are explained below.
Word embeddings Each table element is represented in the term

space as a TF-IDF-weighted vector of words. I.e., ti ∈ Tx
refers to the TF-IDF weight of the ith word in the vocabulary.
�en, each word is represented in the semantic space y = w
by a word embedding vector twi . Speci�cally, we use pre-
trained Word2vec [22, 26] vectors using Google News.

Graph embeddings Each table element is represented in the term
space as a binary vector of entities. I.e., ti ∈ Tx is 1 if the
ith entity in the knowledge base appears in table element
Tx , and is 0 otherwise. �en, each entity is represented in
the semantic space y = д by a graph embedding vector tдi .
Speci�cally, we use pre-trained Graph2vec[29] vectors.

Entity embeddings We use the same term space representation
as for graph embedding, i.e., each table element is described as
a binary vector of entities. �en, each entity ti is represented
in the semantic space y = e as a vector of linked entities.
I.e., the dimensionality of tei is the total number of entities
in the knowledge base. �e jth element of the related entity
vector is expressed as tдi [j] = 1(ej ), where 1 is a binary
indicator function that returns 1 if ei and ej link to each
other, otherwise returns 0.

3.2.2 Table Similarity Features. Existing methods have only con-
sidered matching between elements of the same type, referred to as
element-wise matching. Our framework also enables us to measure
the similarities between elements of di�erent types in a principled
way, referred to as cross-element matching. Finally, as before, we

Table 3: Element-wise and cross-element features used in
CRAB. �e dimension is r × #s × #m, where r is re�ection (1
for element-wise and 2 for cross-element), s is the number of
semantic spaces, andm is the number of element-wise simi-
larity measures.

Element Dimension Element Dimension

T̃H to TH 1 × 1 × 4 = 4 T̃H to Tt 2 × 1 × 4 = 8
T̃D to TD 1 × 3 × 4 = 12 T̃H to TD 2 × 1 × 4 = 8
T̃E to TE 1 × 2 × 4 = 8 T̃D to Tt 2 × 3 × 4 = 24
T̃t to Tt 1 × 3 × 4 = 12 T̃D to TE 2 × 2 × 4 = 16

T̃t to TE 2 × 2 × 4 = 16
Total 36 72

can also utilize table features that characterize the input and candi-
date tables. Below, we detail the set of features used for measuring
element-level similarity.
Element-wise similarity We compute the similarity between el-

ements of the same type from the input and candidate tables.
Each table element may be represented in up to three se-
mantic spaces. �en, in each of those spaces, similarity is
measured using the four element-level similarity measures
(early, late-max, late-sum, and late-avg). Element-wise fea-
tures are summarized in the le� half of Table 3.

Cross-element similarity �is approach compares table elements
of di�erent types in an asymmetrical way. Each pair of el-
ements need to be represented in the same semantic space.
�en, the same element-level similarity measures may be ap-
plied, as before. We list the cross-element similarity features
in the right half of Table 3.

We present four speci�c instantiations of our table matching frame-
work, by considering various combinations of the three main groups
of features. �ese instantiations are labelled as CRAB-1 .. CRAB-4
and are summarized in Table 4.

4 TEST COLLECTION
We introduce our test collection, which consists of a table corpus, a
set of query tables, and corresponding relevance assessments.

4.1 Table Corpus
We use the WikiTables corpus [6], which contains 1.6M tables
extracted from Wikipedia. �e knowledge base we use is DBpedia
(version 2015-10). We restrict ourselves to entities which have a
short textual summary (abstract) in the knowledge base (4.6M in
total). Tables are preprocessed as follows. For each cell that contains
a hyperlink we check if it points to an entity that is present in
DBpedia. If yes, we use the DBpedia identi�er of the linked entity
as the cell’s content (with redirects resolved); otherwise, we replace
the link with the anchor text (i.e., treat it as a string).

4.2 Test Tables and Relevance Assessments
Due to the lack of standard test collections, we sample 50 Wikipedia
tables from the table corpus to be used as test input cases. �ese
tables cover a diverse set of topics, including sports, music, �lms,



Table 4: Features used in various instantiations of our
element-wise tablematching framework. Element-wise and
cross-element features are summarized in Table 3, table fea-
ture are listed in Table 2.

Method Table similarity features
Element-wise Cross-element Table features

CRAB-1
√

CRAB-2
√ √

CRAB-3
√ √

CRAB-4
√ √ √

food, celebrities, geography, and politics. Each table is required to
have at least �ve rows and three columns [41].

Ground truth relevance labels are obtained as follows. For each
input table, three keyword queries are constructed: (i) caption, (ii)
table entities (entities from table plus the entity corresponding to
the Wikipedia page in which the table is embedded), and (iii) table
headings. Each keyword query is used to retrieve the top 150 results,
resulting in at most 450 candidate tables for each query table. All
methods that are compared in the experimental section operate by
reranking these candidate sets. For each method, the top 10 results
are manually annotated.

Each table pair (i.e., input and recommended tables) is judged on a
three point scale: non-relevant (0), relevant (1), and highly relevant
(2). A table is highly relevant if it is about the same topic as the
input table, but contains additional novel content that is not present
in the input table. A table is relevant if it is on-topic, but it contains
limited novel content; i.e., the content largely overlaps with that
of the input table. Otherwise, the table is not relevant; this also
includes tables without substantial content. �ree colleagues were
employed and trained as annotators. We take the majority vote as
the relevance label; if no majority vote is achieved, the mean score
is used as the �nal label. To measure inter-annotator agreement, we
compute the Fleiss Kappa test statistics, which is 0.6703. According
to [14], this is considered as substantial agreement.

4.3 Evaluation Metrics
We evaluate table recommendation performance in terms of Nor-
malized Discounted Cumulative Gain (NDCG) at cut-o�s 5 and 10.
To test signi�cance, we use a two-tailed paired t-test and write †/‡
to denote signi�cance at the 0.05 and 0.01 levels, respectively.

5 EVALUATION
In this section, we report on the experiments we conducted to
answer our research questions.

5.1 Baselines
We implement eight existing methods from literature as baselines.
�e table elements used in these methods are listed in Table 5.
Keyword-based search using TE �e candidate table’s score is

computed by taking the terms from T̃E as the keyword query [1].
Keyword-based search using TH Ahmadov et al. [1] also use ta-

ble headings as keyword queries.
Keyword-based search using Tc Additionally, in this paper we

also consider using the table caption as a query.

Table 5: Table elements used in existing methods.

Method Tc Tp TE TH TD

Keyword-based search using TE [1]
√

Keyword-based search using TH [1]
√

Keyword-based search using Tc
√

Mannheim Search Join Engine [36]
√

Schema complement [12]
√ √

Entity complement [12]
√

Nguyen et al. [25]
√ √

InfoGather [37]
√ √ √

Mannheim Search Join Engine All candidate tables are scored
against the input table using the FastJoin matcher [36].

Schema complement Das Sarma et al. [12] aggregate the bene�ts
of adding additional a�ributes from candidates tables to input
tables as the matching score.

Entity complement �e aggregated scores of the bene�ts of adding
additional entities is taken as the matching score [12] .

Nguyen et al. Headings and table data are represented as term
vectors for table matching in [25].

InfoGather Element-wise similarity across four table elements:
table data, column values, page title, and column headings
are combined by training a linear regression scorer [37].

5.2 Experimental Setup
�e experimental con�gurations of the various methods are as
follows. For keyword-based search, the TE and TH methods query
an index of the table corpus against the respective �elds, while
the Tc variant searches against both the caption and catchall �elds;
all the three methods use BM25. For the Mannheim Search Join
Engine, the edit distance threshold is set to δ = 0.8. For schema
complement, the heading frequency statistics is calculated based on
the Wikipedia table corpora and the heading similarity is aggregated
using average. For entity complement, WLM is based on entity out-
links. �e data similarity threshold is set the same as for string
comparison, i.e., δ = 0.8. To parse terms in a�ribute values, we
remove stopwords and HTML markup, and lowercase tokens. For
Nguyen et al., the smoothing parameter value is taken from [25]
to be α = 0.5. InfoGather is trained using linear regression with
coordinate ascent. All methods introduced by us, i.e., HCF-X and
CRAB-X, are trained using Random Forest Regression with 5-fold
cross-validation; the number of trees is 1000 and the maximum
number features is 3.

Table 6 presents the evaluation results for the eight baselines.
Among the three keyword-based search methods, which operate on
a single table element (top 3 lines), the one that uses table headings
as the keyword query performs the best, followed by table entities
and table caption. �e methods in lines 4–8 consider multiple table
elements; all of these outperform the best single-element method.
�e approach that performs best among all, by a large margin,
is InfoGather, which incorporates four di�erent table elements.
Consequently, we will test our methods against InfoGather.



Table 6: Evaluation results for existing methods from the
literature. Best scores for each metric are boldfaced.

Method NDCG@5 NDCG@10

Keyword-based search using TE 0.2001 0.1998
Keyword-based search using TH 0.2318 0.2527
Keyword-based search using Tc 0.1369 0.1419
Mannheim Search Join Engine 0.3298 0.3131
Schema complement 0.3389 0.3418
Entity complement 0.2986 0.3093
Nguyen et al. 0.2875 0.3007
InfoGather 0.4530 0.4686

5.3 Results
Table 7 compares the evaluation results of the methods we devel-
oped in this paper against InfoGather. HCF-1, which combines all
table similarity features from existing approaches, achieves 18.27%
improvement upon InfoGather in terms of NDCG@10, albeit the
di�erences are not statistically signi�cant. HCF-2 incorporates
additional table features, which leads to substantial (29.11% for
NDCG@10) and signi�cant improvements over InfoGather. �e
bo�om block of Table 7 presents the evaluation results for four
speci�c instantiations of our table matching framework (cf. Ta-
ble 4). Recall that CRAB-1 employs only table similarity features,
thus it is to be compared against HCF-1. CRAB-2..4 additionally
consider table features, which corresponds to the se�ings in HCF-2.
We �nd that CRAB-1 and CRAB-2 outperform the respective HCF
method, while CRAB-4 is on par with it. None of the di�erences
between CRAB-X and the respective HCF method are statistically
signi�cant. �e best overall performer is CRAB-2, with a relative
improvement of 36.2% for NDCG@5 and 33.7% for NDCG@10 over
InfoGather. Figure 4 shows performance di�erences on the level of
individual input tables between InfoGather and CRAB-2. Clearly,
several tables are improved by a large margin, while only a handful
of tables are a�ected negatively.

�e summary of our �ndings thus far is that our semantic table
element representation with element-wise matching is very e�ec-
tive. We can achieve the same performance as a state-of-the-art
approach that relies on hand-cra�ed features (CRAB-1 vs. HCF-1
and CRAB-2 vs. HCF-2). With that, we have accomplished our
main research objective. We further observe that cross-element
matching is less e�ective than element-wise matching (CRAB-3 vs.
CRAB-2). Combining all element-wise and cross-element features
performs worse than using only the former (CRAB-4 vs. CRAB-2).

Now that we have assessed the overall e�ectiveness of our ap-
proach, let us turn to answering a series of more speci�c research
questions.
RQ1 Which of the semantic representations (word-based, graph-

based, or entity-based) is the most e�ective for modeling
table elements?

Table 9 displays results for each of the three semantic represen-
tations. Among those, entity-based performs the best, followed
by word-based and graph-based. �e di�erences between entity-
based and word-based are signi�cant (p < 0.01), but not between
the other pairs of representations. Interestingly, the entity-based

Table 7: Evaluation of our table recommendation meth-
ods against the best existing method. Signi�cance is tested
against InfoGather. Highest scores are in boldface.

Method NDCG@5 NDCG@10

InfoGather 0.4530 0.4686
HCF-1 (feats. from Table 1) 0.5382 0.5542
HCF-2 (feats. from Tables 1 and 2) 0.5895† 0.6050†

CRAB-1 0.5578 0.5672
CRAB-2 0.6172‡ 0.6267‡
CRAB-3 0.5140 0.5282
CRAB-4 0.5804† 0.6027†

Figure 4: Performance di�erence between InfoGather (base-
line) andCRAB-2 on the level of individual input tables. Pos-
itive bars indicate substantial advantage of CRAB-2.

representation delivers performance that is comparable to that of
the best existing method, InfoGather (cf. Table 6). When combing
all three semantic representations (line 4, which is the the same as
CRAB-1 in Table 7), we obtain substantial and signi�cant improve-
ments (p <0.01) over each individual representation. �is shows
the complimentary nature of these semantic representations.
RQ2 Which of the two element-level matching strategies performs

be�er, element-wise or cross-element?
We found that adding all the cross-element similarities hurts (CRAB-
4 vs. CRAB-2 in Table 7). In order to get a be�er understanding of
how the element-wise and cross-element matching strategies com-
pare against each other, we break down recommendation perfor-
mance for all table element pairs according to the di�erent semantic
representations in Table 8. �at is, we rank tables by measuring
similarity only between that pair of elements (4 table similarity
features in total). Here, diagonal cells correspond to element-wise
matching and all other cells correspond to cross-element match-
ing. We observe that element-wise matching works best across
the board. �is is in line with our earlier �ndings, i.e., CRAB-2 vs.
CRAB-3 in Table 7. However, for graph-based and entity-based rep-
resentations, there are several cases where cross-element matching
yields higher scores than element-wise matching. Notably, input
table data (T̃D ) has much higher similarity against the topic of the
candidate table (Tt ) than against its data (TD ) element, for both
graph-based and entity-based representations. �is shows that



Table 8: Element-wise similarities for various semantic representations. Rows and columns corresponds to elements of the
input and candidate tables, respectively. �e evaluation metric is NDCG@10. �e best scores for each row are in boldface.

Word-based Graph-based Entity-based
Tt TH TD Tt TE TD Tt TE TD

T̃t 0.2814 0.0261 0.0436 T̃t 0.2765 0.0546 0.0430 T̃t 0.4796 0.0808 0.0644
T̃H 0.0336 0.1694 0.0288 T̃E 0.0700 0.0679 0.0501 T̃E 0.0705 0.0617 0.0725
T̃D 0.0509 0.0183 0.1276 T̃D 0.1012 0.0423 0.0259 T̃D 0.1052 0.0812 0.0610

Table 9: Comparison of semantic representations. �e sig-
ni�cance of combined method is tested against entity-based
method.

Semantic Repr. NDCG@5 NDCG@10

Word-based 0.3779 0.3906
Graph-based 0.3012 0.3376
Entity-based 0.4484 0.4884
Combined 0.5578† 0.5672†

cross-element matching does have merit for certain table element
pairs. We perform further analysis in Sect. 5.4.1.
RQ3 How much do di�erent table elements contribute to recom-

mendation performance?
To explore the importance of table elements, we turn to Table 8 once
again. We �rst compare the results for element-wise similarity (i.e.,
the diagonals) and �nd that among the four table elements, table
topic (T̃t ↔ Tt ) contributes the most and table data (T̃D ↔ TD )
contributes the least. Second, our observations for cross-element
matching are as follows. Using word-based representation, table
data (T̃D ) is the most important element for the input table, while
for the candidate table it is table topic (Tt ). Interestingly, for graph-
based and entity-based representations it is exactly the other way
around: the most important input table element is topic (T̃t ), while
the most important candidate table element is data (TD ).

5.4 Further Analysis
Now that we have represented our experimental results, we perform
further performance analysis on individual features and on input
table size.

5.4.1 Feature Analysis. To understand the contributions of indi-
vidual features, we �rst rank all features based on Gini importance.
�en, we incrementally add features in batches of 10, and plot
the corresponding recommendation performance in Figure 5. We
observe that we can reach peak performance with using only the
top-20 features. Let us take a closer look at those top-20 features
in Figure 6. We use color coding to help distinguish between the
three main types of features: element-wise, cross-element, and
table features. �en, based on these feature importance scores,
we revisit our research questions. Concerning semantic represen-
tations (RQ1), there are 8 word embedding, 7 entity embedding,
and 3 graph embedding features in the top 20. Even though there
are slightly more features using word embedding than entity em-
beddings, the la�er features are much higher ranked (cf. Fig. 6).

Figure 5: Performance in terms of NDCG with di�erent
number of top features utilized.

�us, the entity-based semantic representation is the most e�ec-
tive one. Comparing matching strategies (RQ2), the numbers of
element-wise and cross-wise features are 15 and 3, respectively.
�is indicates a substantial advantage of element-wise strategies.
Nevertheless, it shows that incorporating the similarity between
elements of di�erent types can also be bene�cial. Additionally,
there are 2 table features in the top 20. As for the importance of
table elements (RQ3), table topic (Tt ) is clearly the most important
one; 8 out of the top 10 features consider that element. In summary,
our observations based on the top-20 features are consistent with
our earlier �ndings.

5.4.2 Input table size. Next, we explore how the size of the input
table a�ects recommendation performance. Speci�cally, we vary
the input table size by spli�ing it horizontally (varying the number
of rows) or vertically (varying the number of columns), and using
only a portion of the table as input; see Fig. 7 for an illustration. We
explore four se�ings by se�ing the split rate x between 25% and
100% in steps of 25%. Figure 8 plots recommendation performance
against input table size. We observe that growing the table, either
horizontally or vertically, results in proportional increase in recom-
mendation performance. �is is not surprising, given that larger
tables contain more information. Nevertheless, being able to utilize
this extra information e�ectively is an essential characteristic of
our table matching framework.

6 RELATEDWORK
An increasing number of studies on web tables are addressing vari-
ous table-related tasks, including table search, table augmentation,
table mining, etc. Among them, table search is considered as a fun-
damental task both on its own and as a component in other tasks.
Table search answers a query with a ranked list of tables. Early
work solves this task for keyword queries [3, 7, 9, 25, 27, 35]. �e
WebTables system by Cafarella et al. [9] pioneered keyword-based
table search by issuing the query to a search engine and �ltering



Figure 6: Top-20 features in terms of Gini importance.
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Figure 7: Performance analysis using only a portion of the
table as input.

tables from the returned web pages; the same approach is imple-
mented in [7] as well. Venetis et al. [35] utilize a database of class
labels and relationships extracted from the Web for table search.
Using column keywords, Pimplikar and Sarawagi [27] search ta-
bles using the term matches in the header, body and context of
tables as signals. An example of a keyword-based table search sys-
tem interface is provided by Google Web Tables.1 �e developers
of this system summarize their experiences in [3]. To enrich the
diversity of search results, Nguyen et al. [25] design a goodness
measure for table search and selection. �eir query is not limited
to keywords, it can also be a table. We have discussed the line of
approaches [1, 12, 18, 19, 25, 37] that can use a table as a query in
Sect. 5.1.

Tables contain rich knowledge and have raised great interest in
table mining research [4, 6, 8–10, 21, 24, 31, 31, 35, 35, 38, 39]. Munoz
et al. [23] recover Wikipedia table semantics and store them in RDF
triples. Similar work is taken in [9] based on tables extracted from a
Google crawl. Instead of mining a whole table corpora, a single table
store many facts, which could be answers for questions. Yin et al.
[38] take a single table as a knowledge base and perform querying
on it using deep neural networks. �e knowledge extracted from
tables could be used to augment an existing knowledge base [13, 32].
E.g., Sekhavat et al. [32] and Dong et al. [13] design probabilistic
methods to utilize table information for augmenting an existing
knowledge base. Another line of work concerns table annotation
1h�ps://research.google.com/tables

Figure 8: Performance of CRAB-2 with respect to (relative)
input table size, by varying the number of rows (Le�) or
columns (Right).

and classi�cation. By mining column content, Zwicklbauer et al.
[44] propose a method to annotate table headers. Studying a large
number of tables in [11], a well de�ned table type taxonomy is
provided for classifying HTML tables. Besides all the above tasks,
table mining refers to tasks like table interpretation [9, 23, 35] and
table recognition [11, 44] as well.

Table augmentation is the task of extending a table with addi-
tional elements, e.g., new columns [5, 7, 12, 18, 37]. To capture
relevant data, e.g., existing columns, these methods need to search
tables [5, 18, 37]. E.g., the Mannheim Search Join Engine [18]
searches the top-k candidate tables from a corpus of web tables and
picks relevant columns to merge. Extending a table with more rows
also needs table retrieval [12, 37, 41, 41]. In [41], two tasks of row
population and column population are proposed, which provide
suggestions for extending an entity-focused table with additional
rows and columns. Table completion is the task of �lling in empty
cells within a table. Ahmadov et al. [1] introduce a method to ex-
tract table values from related tables and/or to predict them using
machine learning methods.

7 CONCLUSIONS
In this paper, we have introduced and addressed the task of rec-
ommending related tables: returning a ranked list of tables that are
related to a given input table. We have proposed a novel element-
oriented table matching framework that represents table elements
uniformly and considers their similarity in multiple semantic spaces.
�is framework can incorporate the similarity between table ele-
ments that are of the same type (element-wise matching) as well as
those that are of di�erent types (cross-element matching). We have
further presented four speci�c instantiations of this general frame-
work and considered word-based, graph-based, and entity-based
semantic representations. For evaluation, we have developed a stan-
dard test collection based on Wikipedia tables, and demonstrated
that our approach delivers state-of-the-art performance.

In the future, we plan to test our method on a more heteroge-
neous collection of tables from the Web, which vary more quality-
wise than Wikipedia tables. We are further interested in evaluating
the utility of our approach with user studies.
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