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Abstract

Semi-structured data, such as Infobox tables,
often include temporal information about en-
tities, either implicitly or explicitly. Can cur-
rent NLP systems reason about such informa-
tion in semi-structured tables? To tackle this
question, we introduce the task of temporal
question answering on semi-structured tables.
We present a dataset, TEMPTABQA, which
comprises 11,454 question-answer pairs ex-
tracted from 1,208 Wikipedia Infobox tables
spanning more than 90 distinct domains. Us-
ing this dataset, we evaluate several state-of-
the-art models for temporal reasoning. We ob-
serve that even the top-performing LLMs lag
behind human performance by more than 13.5
F1 points. Given these results, our dataset has
the potential to serve as a challenging bench-
mark to improve the temporal reasoning capa-
bilities of NLP models.

1 Introduction

Reasoning about temporal aspects of factual in-
formation presents a fundamental challenge for
contemporary Natural Language Processing (NLP)
systems. Factual information related to an entity
often evolves over time, and understanding it re-
quires understanding the scope of knowledge and
temporal intervals. Furthermore, this factual infor-
mation is also scattered across semi-structured data
in several different forms. These forms include
both implicit and explicit representations (see Fig-
ure 1 for an example). The wide prevalence of these
characteristics creates major challenges for NLP
models. It requires these models to effectively han-
dle changes over time and extract valuable insights
from time-dependent data.

Previous studies have primarily concentrated on
question answering (Pasupat and Liang, 2015; Kr-
ishnamurthy et al., 2017) and inference (Gupta

∗Work done during an internship at Bloomberg. †Equal
contributions. ‡Corresponding authors.

Q1: How many years elapsed between Nedelcheva’s 1st and
last silver medals? A1: 6 years

Q2: How many bronze medals has Nedelcheva’s won since
2013? A2: 3

Q3: Which country did Nedelcheva’s represent in the 2015
European Games? A3: Bulgaria

Q4: What was the ranking difference between Nedelcheva’s
top doubles and singles performances? A4: 5

Figure 1: A semi-structured table of women badminton play-
ers (source: Wikipedia) along with accompanying temporal
questions and their respective answers form TEMPTABQA.

et al., 2020; Chen et al., 2020b) concerning nu-
merical aspects of semi-structured tables. They
typically examine tables without time-related infor-
mation and focus on queries with predominantly
non-temporal contexts. Research on temporal as-
pects in entity-centric tables, such as Wikipedia
Infoboxes, has been limited (Gupta et al., 2020;
Neeraja et al., 2021; Kumar et al., 2022). Morales
et al. (2016) introduced question answering in an
entity-centric table context. However, the ques-
tions in the dataset are simple and non-temporal,
and it’s worth noting that the dataset is not open
source. Existing studies have only considered a few
temporal aspects and addressed a small number of



time-related factors. Advances in modeling tech-
niques, including table pre-training and targeted
fine-tuning, have substantially improved reason-
ing on semi-structured tables (Müller et al., 2021;
Eisenschlos et al., 2020). Moreover, large language
models (LLMs) have exhibited impressive perfor-
mance across various domains, such as general,
finance, and medical, demonstrating their mathe-
matical, knowledge-based, and common-sense rea-
soning capabilities (Chen et al., 2021d; Aly et al.,
2021; Wang et al., 2021; Lu et al., 2023). However,
the effectiveness of these models in handling tem-
poral aspects remains understudied. Consequently,
this paper seeks to address the following research
question: “Can modern NLP models effectively rea-
son about temporal information in semi-structured
tables?”

To effectively address the above question, we
introduce a new task called temporal question an-
swering on entity-centric semi-structured tables.
Figure 1 shows an example. We curate a compre-
hensive (covering diverse domains), specialized
(temporally aligned), and human-verified dataset,
TEMPTABQA. It consists of 11,454 question-
answer pairs extracted from 1,208 Wikipedia In-
fobox tables across more than 90 domains. Both
the tables and questions in TEMPTABQA are en-
compass numerous temporal terms. For example,
the Figure 1 table involve multiple dates, age, years,
and the corresponding questions also incorporate
temporal terms, such as first and last, years (since
2013), ranking, and more. These enhanced tables
incorporate temporal information, ensuring that all
queries have time-related components. This dataset
is the first to explore question-answering and tem-
poral reasoning in semi-structured data.

We conduct analysis of temporal reasoning chal-
lenges in TEMPTABQA, offering both qualita-
tive and quantitative insights. Most questions in
TEMPTABQA are abstractive and necessitate math-
ematical calculations over temporal concepts to
arrive at correct answers. The dataset also encom-
passes additional test sets to evaluate reasoning
in rare domains. Our findings indicate that tem-
poral reasoning in TEMPTABQA poses greater
challenges compared to non-temporal reasoning
in previous tabular datasets. Our assessment of
contemporary NLP systems on the TEMPTABQA
benchmark exposes their subpar performance in
comparison to humans. Humans excel at tempo-
ral reasoning, delivering accurate answers and in-

depth explanations. In contrast, our error analysis
shows that models frequently make mistakes, par-
ticularly when faced with complex temporal rea-
soning questions. Consequently, our dataset serves
as a challenging testbed for investigating effective
temporal reasoning within semi-structured infor-
mation.

Our paper marks a significant milestone by pi-
oneering the creation of complex temporal ques-
tion answering datasets, specifically tailored to
entity-centric tables. Our primary objective was
to introduce a novel challenge – addressing intri-
cate temporal questions within this context. The
TEMPTABQA dataset not only demands sophisti-
cated reasoning but also necessitates a firm grasp
of temporal common sense, adept handling of arith-
metic and numerical aspects. Our work sheds light
on the unique temporal specificity of this dataset,
setting it apart from existing models. Furthermore,
we delves deep into this differentiation, offering
a comprehensive array of statistics and analyses
that illuminate the multitude of temporal reason-
ing challenges posed by the dataset. The findings
from above enhance our understanding of temporal
reasoning in tables and encourage further research.

The TEMPTABQA dataset can be accessed at
https://zenodo.org/records/10022927. For relevant
analysis and modeling scripts refer at https://

temptabqa.github.io.

2 Motivation

Dynamic Nature of Information. Tables serve
as structured representations that organize and
record diverse information types, making them
highly useful for studying an entity’s timeline.
They offer a comprehensive record of events, en-
abling clear visualization of the evolution of vari-
ous aspects over time. By capturing a chronologi-
cal sequence of events, tables allow us to analyze
the progression of positions, changes in marital
status, and the acquisition of awards, serving as re-
liable sources for temporal reasoning. Additionally,
entity-centric tables, such as Wikipedia Infoboxes,
significantly differ from both unstructured and fully
structured data (SQL tables and KGs). These tables
possess a semi-structured nature and store data in
intricate implicit forms, as discussed in the context
of semi-structured tables (Gupta et al., 2020).

Tables in the Real World. Complex temporal
question answering applied to entity-centric semi-
structured tables, like Wikipedia Infoboxes, has

https://zenodo.org/records/10022927
https://temptabqa.github.io
https://temptabqa.github.io


broad applicability across various fields. In his-
torical research and education, it helps scholars,
historians, and students extract precise historical
details, while in financial analysis, it empowers
analysts with historical financial data for informed
investment decisions. In medical research, it aids in
accessing historical medical data and clinical trial
timelines, and legal professionals use it to review
historical legal records. Journalists gain historical
context, linguists analyze language dynamics, and
businesses optimize supply chains through histor-
ical data. Environmental researchers, policy ana-
lysts, travelers, software developers, and archivists
all benefit from this versatile tool. This underscores
the significance of discovering valuable informa-
tion within tables across a broad spectrum of di-
verse fields.

Why Temporal Questions Answering? Tem-
poral questions require reasoning based on time-
related information, falling into two main cate-
gories: explicit and implicit: (a.) Explicit tem-
poral questions directly involve time-specific de-
tails like dates, years, or hours, demanding precise
knowledge. For example, in Figure 1, question
such as ‘When was the Nedelcheva’s was born?’
is an explicit temporal question. (b.) Implicit tem-
poral questions rely on temporal terms and rela-
tionships that indicate the temporal order or con-
text of events or entities. These questions may
include terms like "rank," "before," "after," "pre-
decessor," "successor," and similar expressions. In
such cases, the temporal dimension isn’t explic-
itly stated (e.g., mention of year not in the table)
but must be inferred (or extracted) from the given
context with understanding of the relationships be-
tween elements. For instance, in Figure 1 ‘How
many Bronze medals did Nedelcheva’s won before
2013?’ assumes an implicit understanding of the
temporal sequence. In essence, addressing tempo-
ral questions involves comprehending and manip-
ulating time-related information, whether explicit
or implicit. This skill is vital in domains spanning
historical research to natural language understand-
ing, enabling effective reasoning about temporal
aspects within data.

Why a new Table QA dataset? Current datasets
such WIKITABLEQUESTIONS (Pasupat and Liang,
2015), SQUALL (Shi et al., 2020), FINQA (Chen
et al., 2021d), TAT-QA (Zhu et al., 2021), HY-
BRIDQA (Chen et al., 2020c), FETAQA (Nan et al.,

2022), SequentialQA(SQA) (Iyyer et al., 2017),
and WIKISQL (Zhong et al., 2017) for question-
answering on table are limited in terms of both
quantity and complexity of temporal questions. Ta-
ble 31 show broad comparison across several tab-
ular datasets. They fail to cover crucial aspects of
temporal reasoning, necessitating the creation of
a new manually curated dataset that specifically
focuses on answering temporal questions related to
tables. Our dataset, TEMPTABQA, can serve help
train and evaluate models, aiding the development
of more accurate and robust systems capable of
effectively reasoning with temporal information in
table-based contexts.

3 Our TEMPTABQA Dataset

We create a benchmark for answering temporal
questions on entity-centric tables across domains.

3.1 Data Creation

Table Domains Selection. TEMPTABQA is built
with Infobox tables from various Wikipedia arti-
cles across more than 90 categories. We focus
on domains with time-related attributes in tables,
particularly articles with Infoboxes containing tem-
poral values. We analyze 1,208 Infobox templates1

to compile a varied domain list, prioritizing entity
tables with numerous temporal values like dates
and times. Our analysis indicates that longer tables
from popular and highly viewed articles contain
a higher amount of temporal information, includ-
ing an increased presence of temporal terms. As a
result, these longer tables are deemed more appro-
priate for inclusion in TEMPTABQA. 2

Annotation Procedure. To generate question-
answer pairs from selected tables, we engage Ama-
zon Mechanical Turk crowd-workers. MTurk anno-
tators draft both the temporal question and answer
based on a provided table. To ensure clarity, we
instruct annotators to write clear, unambiguous,
pronoun-free questions with grammatically com-
plete answers. We also direct them to avoid yes/no
questions and trivial questions that do not require
temporal reasoning. This annotation approach en-
sures that the questions are challenging enough to
evaluate models. We advise annotators to avoid

1https://en.wikipedia.org/wiki/Wikipedia:
List_of_infoboxes

2We extract tables using BeautifulSoup4 and the Wikipedia
extraction API.

https://en.wikipedia.org/wiki/Wikipedia:List_of_infoboxes
https://en.wikipedia.org/wiki/Wikipedia:List_of_infoboxes


repeating question patterns and instead use differ-
ent starting tokens like "What," "When," "Whose,"
"How," "Where," "Who," "How many," etc., in or-
der to prevent biased evaluation results. We instruct
them to incorporate multiple unique rows from the
table when formulating questions, including logical
aspects that require reasoning to enhance complex-
ity and variation. This evaluation approach ensures
that the model’s ability to reason across different
parts of the table is assessed, and the questions are
not overly basic. We encourage annotators to ac-
tively create unique questions, avoiding repetition
and incorporating linguistic variation. This pro-
cess fosters the generation of novel and interesting
questions.

To answer the questions, we asked Turkers to
provide brief responses in the form of phrases
rather than full sentences. Additional information
regarding Turking cost, annotator statistics, bonus
and reward criteria, batch splitting, and other de-
tails are outlined in the appendix §D.

Dealing with Annotation Bias. Annotators may
rely on personal biases, leading to position, selec-
tion, and popularity biases. They might also use
repetitive question patterns and similar logical rea-
soning. To address these biases, we implemented
measures such as: (1) Diverse Table Categories:
Including tables from various categories in a sin-
gle batch for diversity, with 12 distinct domains
and no more than 3 tables from the same domain.
(2) Removal of Popular Rows: Excluding frequent
keys in entity tables, such as "Year Active," "Born,"
"Died," etc. (3) Shuffling and Reordering: Address-
ing position bias by shuffling table content and re-
ordering subheadings like tournament titles, medal
tallies, and awards. (4) Mitigating Selection Bias:
Lessening selection bias by removing popular sub-
sections, such as the "Olympics" section from an
athlete table.

3.2 TEMPTABQA Statistics and Analysis
Dataset. Table 1 presents key metrics, including
average row count, total unique tables, total ques-
tions, and average questions per table. We provide
two test sets instead of one: the Head set with pop-
ular frequent domains, and the Tail set with rarer
domains. Data split for train, development, head,
and tail test sets are shown in Table 2.

Questions. Table 3 describes the composition
and complexity of questions in our dataset. It
presents the percentage of simple and complex

Metric Statistics Metric Statistics

#average rows 22 #unique tables 1208
#questions 11454 #question/table 9.5

Table 1: TEMPTABQA dataset statistic.

Dataset #categories #tables #QA

train 73 784 7680
dev 67 97 885
head-set 73 202 1851
tail-set 19 125 1038

Table 2: TEMPTABQA dataset splits statistic.

questions, taking into account multiple time-frame
reasoning, the presence of single or multiple
entities, and the inclusion of mathematical op-
erations on temporal aspects. A question is
deemed complex if it involves at least two si-
multaneous temporal reasoning steps from the
categories of before-related, after-related, and in-
between/during-related. Further details regarding
these analyses, including mathematical operations
such as min, max, count, average, difference, and
comparison, can be found in Table 5.

Question Type Percent(%) Question Type Percent(%)

Simple 57.81 Complex 42.19
Multiple Entity 47.90 Single Entity 52.10

Table 3: TEMPTABQA questions complexity.

We examine the required temporal intervals, in-
cluding before, after, and present, as shown in Ta-
ble 4. To categorize questions as current, we use
keywords such as "until", "in", "during", "while",
"at the same time", "meanwhile," "when", "since",
and soon. Past questions contained keywords such
as "before", "previous to", "prior to", "preceding",
and soon., and future questions contained keywords
such as "after", "following", "successor", "followed
by", and soon.

Type Percent(%) Interval Percent(%)

#implicit 63.23 Past 3.08
#explicts 36.76 Future 8.48
#ordinal 18.63 Present 66.64

Table 4: TEMPTABQA question reasoning type.

In addition, Table 4 also distinguishes between
explicit and implicit temporal questions. Explicit
questions mention a specific time or date, while
implicit questions do not mention explicitly such
temporal references. We also identified questions
that used ordinal words or implied ranking or count-
ing operations.



Answers. Table 6 breaks down answer types by
counting examples whose answers are for several
entity types: money, person, organization, location,
percentage, and product.

Operation #QA Operation #QA Operation #QA

Maximum 402 Sum 312 Count 3564
Minimum 377 Average 40
Difference 98 Compare 133

Table 5: TEMPTABQA questions mathematical operations.

Analysis Entity #QA Entity #QA

Money 97 Location 411
Entity Type Person 843 Organization 384

Percentage 44 Product 57

Analysis Type #QA Type #QA

Count 2130 Ranking 58
Complexity Boolean 45 Temporal 4823

Age 1085

Table 6: TEMPTABQA answer entity type and complexity.

Furthermore, we also evaluates answer com-
plexity based on types such as count cardi-
nal, ranking ordinal, boolean (Yes/No), temporal
(Date/Time/Year), and age-related terms.

3.3 TEMPTABQA Dataset Validation

To ensure answer correctness in TEMPTABQA, we
validate the development and two test sets by as-
signing three annotators to answer the questions
based on the table. Annotators are instructed to
provide concise yet comprehensive explanations to
ensure accuracy and logical reasoning. The given
instructions to annotators are as follows: (a.) Use
Table Information Only: Annotators are instructed
to rely solely on the table information, avoiding
external knowledge except for common sense rea-
soning. (b.) Clear, Concise, and Unambiguous
Answers: Annotators are asked to clear, concise,
complete, and unambiguous answers and expla-
nations, ensuring accuracy and clarity in the val-
idation process. (c.) Avoid Opinions or Assump-
tions: To maintain objectivity and accuracy, an-
notators are instructed to refrain from including
personal opinions or assumptions in their explana-
tions. (d.) Exclude Acronyms or Abbreviations: To
ensure clarity and avoid confusion, annotators are
instructed to avoid using acronyms or abbreviations
in their explanations. (e.) Current Date and Year:
During the annotation process, we instructed an-
notators to consider December 2022 as the current
month when answering questions that involve the
present moment.

Dataset Majority Agreement Human Accuracy

Dev set 91.56 86.36
Head Test 93.62 86.17
Tail Test 89.73 86.47

Table 7: Data Validation Statistics, here both metric report
the exact match.

TEMPTABQA Filtering. We use pre-processing
to refine our training set, removing non-temporal
and basic questions. The test and development
sets undergo manual reviews by NLP experts af-
ter initial script-based filtering to maintain qual-
ity, focusing on complex temporal queries. We
correct errors and prioritize questions that demand
advanced reasoning, excluding those with direct an-
swers or requiring external knowledge. Annotators
were instructed to provide clear answers. However,
some answers varied in format like "365 days" ver-
sus "one year". We made sure evaluation didn’t
penalize format differences, applying regex rules
validated by human checks. For more details on
filter refer to the appendix §D.

In the development set, less than 10% of ques-
tions, under 7% in the Head set, and under 11% in
the Tail set were ambiguous, as shown in Table 7.
Under 3% of questions were subjective. The most
errors came from complex reasoning, whereas date-
time errors were typically a year off. Around 82%
of the annotated questions reach a clear majority
consensus, demonstrating high agreement among
annotators. For non-consensus questions, another
review boosted agreement by 8-10%. By compar-
ing the majority and gold answers, human accuracy
was found to be 86%, as detailed in Table 7. See
appendix §D, table 30 for fine-grained agreement.

4 Experimental Evaluation

We address the following research questions
through our experiments: (a.) Is the new dataset
TEMPTABQA challenging for existing models?
(b.) Does finetuning on TEMPTABQA enhance
model performance? (c.) Does providing few-shot
examples and chain of thought reasoning benefit
them? (d.) Is the performance on the tail domains
worse than on the head domains?

Evaluation: We use the following metrics to eval-
uate the models: F1 score (F1), Exact Match (EM),
Rouge 1 (R1) and 2 (R2), and Meteor (MET). For
evaluation purposes, we treat December 2022 as
the current month and year. To ensure models are
aware of this, in all experiments, we add a new
table row ‘Current Date: December, 2022’.



Models for Comparison. Since most of the ques-
tions in TEMPTABQA require temporal and nu-
merical reasoning to answer and are abstractive in
nature, we mostly use decoder-only models (ex-
cept for BART which are encoder-decoder mod-
els). We consider the following models: (a.) Fine-
tuned model: BART-Large, T5-XL, and Flan-T5-
XL, along with smaller versions, all fine-tuned
on TEMPTABQA. (b.) Zero-shot LLM: T5-XXL,
Flan-T5-XXL, LLaMA-2, GPT-3.5 and 4, and
PaLM along with smaller versions, without fine-
tuning. (c.) Few-shot LLM: Same models as with
zero-shot but in few shot settings with three refer-
ence examples. (d.) Few-shot LLM with Chain
of Thoughts: Similar to the few-shot setup, but
with chain-of-thought (Wei et al., 2022) reasoning
included with examples. 3

For additional details on the these models, in-
cluding hyperparameter information, please refer
to the appendix §C.

4.1 Our Findings: Results and Analysis

Table 8, 9, 10, 11 show the zero-shot, fine tuned,
few-shot w/o chain of thoughts and few-shot with
chain of thoughts prompting models performance.

TEMPTABQA is Challenging. The dataset
presents an challenging task, with all models per-
forming significantly worse than the human, refer
to Table 8, 9, 10, 11. Even our top-performing
model, GPT-4 with Chain of Thought prompting,
lags behind humans by 13.19 and 20.61 F1 points
on the Head and Tail sets, respectively. Addi-
tionally, our best fine-tuned model, Flan-T5-XL,
trails even further behind, with a margin of 31.75
and 32.58 F1 points on the Head and Tail sets.
4Furthermore, the GPT model consistently outper-
forms other models, such as Flan-T5 and T5, in
both zero-shot and few-shot settings. Turning ta-
bles into knowledge graphs (+KG) 5 results in the
model’s superior performance compared to conven-
tional linearization methods.

Fine-tuning Helps. Our findings, in Table 9,
highlight the significant advantages of fine-tuning
medium-scale models. Remarkably, fine-tuned
Flan-T5-XL models outperform the non-fine-tuned

3We didn’t include TabT5 due to proprietary industry re-
strictions (not published in the open source dataset).

4Due to resource limitations we didn’t fine-tuning models
larger than XL size.

5We use GPT-4 with human in the loop to convert table to
Knowledge Graph.

Model Size F1 EM R1 R2 MET

Head Domain

T5
L 35.51 33.93 35.73 35.67 23.97
XL 35.51 33.93 35.73 35.67 27.07
XXL 38.08 36.77 38.08 38.05 25.86

Flan-T5
L 33.81 32.04 33.91 33.87 22.43
XL 41.80 40.72 41.83 41.8 27.17
XXL 43.29 41.87 43.41 43.40 27.78

LLaMA 2 47.90 40.73 48.36 48.28 33.62

GPT 3.5 53.38 49.03 53.64 53.56 39.09
4 69.97 65.17 70.24 70.22 50.33

+KG 4 72.24 68.02 72.98 72.86 52.10
PaLM 2 69.05 66.82 69.00 68.91 42.32
Human 87.49 86.17 87.61 87.61 58.87

Tail Domain

T5
L 28.02 25.41 29.01 28.96 18.45
XL 31.39 28.72 32.39 32.32 20.45
XXL 30.12 27.65 30.92 30.88 19.82

Flan-T5
L 29.06 26.29 29.98 29.92 18.25
XL 36.54 34.76 37.65 37.58 22.35
XXL 38.68 36.81 39.92 39.88 23.53

LLaMA 2 39.75 31.59 40.68 40.65 327.02

GPT 3.5 47.81 43.04 49.22 49.13 33.81
4 60.54 55.21 62.17 62.15 42.49

+KG 4 62.80 57.80 64.18 64.16 43.99
PaLM 2 61.64 58.38 63.14 63.07 37.23
Human 87.82 86.47 87.97 87.94 57.26

Table 8: Zero Shot Setting.

Flan-T5-XXL model, which is even larger in size,
in various few-shot scenarios, including chain-of-
thought prompting, by impressive margins of 13.79
and 17.18 F1 points. However, when compared to
the GPT models, particularly in few-shot scenarios
with chain-of-thought prompting, the fine-tuned
models fall short by 18.56 and 11.97 on the Head
and Tail sets respectively.

Model Size F1 EM R1 R2 MET

Head Domain

BART B 38.06 26.72 38.69 38.68 26.58
L 45.68 34.56 46.35 46.32 29.08

T5

B 42.37 35.40 42.90 42.84 28.26
L 49.48 39.03 50.19 50.12 34.07
XL 52.82 42.16 53.49 53.42 36.42

Flan-T5
B 43.24 37.03 43.85 43.77 28.39
L 47.86 39.35 48.49 48.41 29.36
XL 55.74 45.56 56.46 56.41 38.74

Human 87.49 86.17 87.61 87.61 58.87

Tail Domain

BART B 35.62 24.44 36.74 36.68 24.31
L 41.99 30.77 43.16 43.08 26.01

T5
B 36.76 29.89 37.55 37.52 22.97
L 44.45 35.15 45.95 45.75 28.89
XL 51.61 41.19 53.42 53.35 34.61

Flan-T5
B 38.20 31.84 39.34 39.28 23.86
L 41.83 32.91 43.19 42.99 23.23
XL 55.24 45.08 56.94 56.91 37.11

Human 87.82 86.47 87.97 87.94 57.26

Table 9: Instruction Fine-tune Models.



Few-shot (w CoT) > few-shot (w/o CoT) > zero-
shot). Tables 10 and 11 shows that few-shot mod-
els outperform their zero-shot counterparts. For
instance, GPT-4 shows a gain of 2.0 and 2.23 F1
points on the Head and Tail sets, respectively, in
the few-shot version compared to the zero-shot ver-
sion. This trend is consistent across models like
Flan-T5 and T5, regardless of model size. Notably,
larger model sizes (L to XL to XXL) yield im-
proved performance. Furthermore, incorporating
chain-of-thought prompting provides an additional
boost to the model’s performance. Furthermore,
linearization outperforms knowledge graphs.

Model Size F1 EM R1 R2 MET

Head Domain

Flan-T5
L 35.79 34.14 35.89 35.83 23.95
XL 41.64 40.50 41.70 41.67 27.07
XXL 41.06 39.35 41.23 41.21 26.96

LLaMA 2 53.57 53.57 53.67 53.58 37.95

GPT 3.5 57.35 53.34 57.65 57.54 42.55
4 71.97 67.07 72.15 72.10 51.60

+KG 4 70.48 65.69 70.71 70.66 50.32
PaLM 2 68.84 66.40 68.96 68.90 42.78
Human 87.49 86.17 87.61 87.61 58.87

Tail Domain

Flan-T5
L 29.70 26.78 30.52 30.45 18.88
XL 36.48 34.86 37.82 37.75 22.38
XXL 36.48 34.86 37.82 37.75 22.51

LLaMA 2 46.01 37.66 46.70 46.67 31.76

GPT 3.5 53.43 49.37 54.24 54.12 39.06
4 62.77 57.94 64.37 64.34 44.21

+KG 4 61.99 57.42 63.55 63.52 43.67
PaLM 2 59.94 57.42 61.46 61.39 36.65
Human 87.82 86.47 87.97 87.94 57.26

Table 10: Few Shot w/o Chain of Thought Prompting.

Model Size F1 EM R1 R2 MET

Head Domain

Flan-T5
L 35.20 32.88 35.21 35.16 25.32
XL 38.31 35.46 38.52 38.51 25.84
XXL 41.95 39.61 42.02 41.94 30.27

LLaMA 2 50.21 44.02 50.45 50.44 35.88

GPT 3.5 62.15 56.13 62.63 62.58 44.63
4 74.30 68.96 74.49 74.47 53.07

+KG 4 72.82 67.37 73.11 73.09 51.95
PaLM 2 68.41 64.07 68.55 68.47 44.38
Human 87.49 86.17 87.61 87.61 58.87

Tail Domain

Flan-T5
L 31.22 28.43 31.47 31.34 22.13
XL 33.12 29.79 34.17 34.14 21.50
XXL 38.06 34.86 38.81 38.67 27.07

LLaMA 2 46.07 39.26 46.77 46.72 31.63

GPT 3.5 55.84 50.05 57.32 57.25 39.60
4 67.21 61.54 68.66 68.64 47.50

+KG 4 64.67 58.95 66.22 66.19 45.45
PaLM 2 61.56 55.87 62.94 62.81 39.32
Human 87.82 86.47 87.97 87.94 57.26

Table 11: Few Shot with Chain of Thought Prompting.

Head vs.Tail domain. Our observations reveal
that the tail set posed greater challenges for all mod-
els across various settings, while humans achieved
similar performance on both sets. Models face
greater challenges with tail tables in contrast to
head tables. For instance, even the top-performing
model, GPT-4, showed a difference of around 9.20
F1 points, performing better on the Head set in
zero-shot scenarios. However, this performance
gap diminished with few-shot learning and chain-
of-thought reasoning. In few-shot scenarios with
chain-of-thought prompting, the gap reduced to
7.09 F1 points This phenomenon mainly results
from knowledge transfer between less common and
widely recognized sports tables. The head tables
exhibit many common attributes and pose similar
types of questions, in contrast to the rare tables

5 Analysis Breakdown of Performance

In our analysis, we examine the results (exact
match) of our best model, GPT-4 few-shot with
chain of thought, alongside human performance.

Question Types. We categorize questions based
on their types: starting with "what," "where,"
"when," "how," or "quantity" (also known as "how
many"). The evaluation of the GPT-4 model’s per-
formance (exact match) compared to humans is
presented in Table 12.

Question Head Set Tail Set
Type # Human GPT-4 # Human GPT-4

what 470 87.23 70.64 326 86.20 64.11
where 22 95.45 90.91 12 83.33 50.00
who 80 88.75 63.75 44 70.45 34.09
when 264 90.87 74.24 102 91.18 69.31
how many 588 80.27 70.75 378 81.48 67.46
how much 151 81.58 62.91 105 81.90 65.71

Table 12: Performance comparison Question Types

Analysis. Humans consistently outperform the
model in all scenarios, with a notable performance
disparity in the tail domain. The model demon-
strates relatively stronger performance in answer-
ing "Where" and "How Much" questions compared
to other types. However, it faces challenges in tack-
ling "What," "Who," and "When" questions, result-
ing in lower performance. We observe that humans
handle "Where" questions with the least difficulty
and struggle the most with "How Many" questions.
Conversely, the model encounters significant chal-
lenges with "Who" questions and performs rela-
tively better with "Where" question types.



Reasoning Operation. To answer the questions,
various analytical reasoning operations are in-
volved, such as maximum, minimum, counting,
summation, average, difference, and comparison.
Table 13 provides a evaluation of the GPT-4
model’s performance (exact match) compared to
human performance, focusing on these operations.

Reasoning Head Set Tail Set
Operation # Human GPT-4 # Human GPT-4

Maximum 89 95.51 79.78 42 83.34 69.05
Minimum 102 87.25 67.65 38 86.84 71.05
Counting 603 80.41 73.47 375 82.93 70.41
Summation 44 70.45 52.27 38 68.42 42.11
Difference 16 62.51 43.75 11 72.72 54.54
Comparison 21 80.95 66.67 13 69.23 53.85

Table 13: Performance comparison w.r.t. Operations.

Analysis. Once again, it is evident that humans
consistently outperform the model in all types of
operations, particularly in challenging tasks. Fur-
thermore, our observations reveal that the model
demonstrates relatively stronger performance in
analytical reasoning tasks like "maximum" and
"counting" compared to other types of tasks. How-
ever, it faces significant challenges in tasks such
as "minimum," "difference," and "comparison," re-
sulting in lower performance levels. Overall, both
humans and the model excel in "maximum" tasks
while struggling with "difference" and "summa-
tion" tasks. Additionally, the model’s performance
in "minimum" and "comparison" tasks falls short
compared to human performance, indicating its
limitations in these areas.

Explicit or Implicit. Our analysis compares the
performance of humans and the best model in an-
swering explicit and implicit time-related questions.
Explicit questions directly mention time and can
be found in the table, while implicit questions re-
quire inferring the time from the table information.
Table 15 showcases the model’s performance on
both question types.

Answer Head Set Tail Set
Type # Human GPT-4 # Human GPT-4

explicit 565 85.31 68.5 296 81.65 57.43
implicit 1018 84.38 71.71 686 87.87 67.64

Table 14: Performance comparison Answer Types.

Analysis. The model demonstrates better perfor-
mance in implicit temporal reasoning compared to
explicit temporal reasoning. As earlier model strug-
gles more with rare and infrequent questions in the
tail domain. Implicit temporal reasoning questions

are more prevalent, with a greater performance dif-
ference between the two types observed in the tail
set. Notably, humans also struggle more with ex-
plicit questions compared to implicit ones, likely
due to increased complexity and advanced mathe-
matical reasoning requirements. Explicit questions
demand deeper understanding and precise reason-
ing, explicitly stating specific temporal information,
while implicit questions rely more on contextual
reasoning and inference, allowing the model to
leverage broader table information.

Answer Types. We analyze the entity or common
noun type of the answer. Answer categories include
age (gap or sum), count, monetary terms, ordinal
numbers, organization names, percentages, person
names, place names, product specifics, temporal en-
tities (date, time, day), Boolean (yes/no, true/false,
comparison), or unknown (not any specific type).
Table 15 presents the model’s performance based
on the type of answer entity.

Entity Head Set Tail Set
Type # Human GPT-4 # Human GPT-4

Boolean 2 100 50.00 7 57.14 42.86
Temporal 736 83.7 69.93 411 81.11 64.23
Count 341 83.87 75.37 245 86.94 75.51
Age 133 83.46 56.72 85 91.67 60
Money 17 82.35 64.71 3 66.67 66.67
Percentage 8 62.5 37.5 6 16.67 33.33
Ordinal 6 66.67 50 1 0 0
Place 47 97.87 87.23 24 87.5 62.5
Person 76 89.47 65.79 43 69.77 32.56
Organization 69 89.86 82.61 43 95.35 60.47
Unknown 146 85.62 69.86 107 83.18 60.75

Table 15: Performance comparison Entity Types.

Analysis. Our analysis reveals that the model
struggles with calculating age gaps, boolean, place,
and person-related questions, in contrast to count-
related questions. Similar to previous findings,
both the model and humans perform better on fre-
quent head domain tables compared to tail domain
tables. However, regardless of table type, both hu-
mans and the model encounter difficulties with per-
centages and ordinals. The model’s performance
is notably weaker in age gap calculations, boolean,
place, and person-related questions, while exhibit-
ing better performance in count-related questions.
Additionally, both humans and the model face chal-
lenges with percentages and ordinals across table
domains. For GPT-3.5 analysis, refer to appendix
§A. Category-specific analysis based on table do-
main is in appendix §B.



6 Comparison with Related Work

Tabular Datasets and Models. Recent stud-
ies have explored various NLP tasks on semi-
structured tabular data, including tabular natural
language inference, fact verification (Chen et al.,
2020b; Gupta et al., 2020; Zhang and Balog, 2019),
question answering, semantic parsing (Zhang and
Balog, 2020; Zhang et al., 2020b; Pasupat and
Liang, 2015; Krishnamurthy et al., 2017; Abbas
et al., 2016; Sun et al., 2016; Chen et al., 2020c; Lin
et al., 2020; Zayats et al., 2021; Oguz et al., 2020;
Chen et al., 2021b; Iyyer et al., 2017), and table-to-
text generation (Parikh et al., 2020; Li et al., 2021;
Nan et al., 2021; Yoran et al., 2021; Chen et al.,
2020a).

Various strategies have been proposed to rep-
resent Wikipedia relational tables, including Ta-
ble2vec (Deng et al., 2019), TAPAS (Herzig et al.,
2020), TaBERT (Yin et al., 2020), TabStruc (Zhang
et al., 2020a), TABBIE (Iida et al., 2021), TabGCN
(Pramanick and Bhattacharya, 2021), and RCI
(Glass et al., 2021). Pre-training methods have
also been studied to improve tabular inference (Yu
et al., 2018, 2021; Eisenschlos et al., 2020; Neeraja
et al., 2021). Recent shared tasks like SemEval’21
Task 9 (Wang et al., 2021) and FEVEROUS’21
shared task (Aly et al., 2021) have further explored
these areas.

In comparision to prior work, TEMPTABQA cen-
ters on temporal question answering within entity-
centric tables, an untapped domain. While most
datasets lean towards non-temporal queries, they
seldom address temporal aspects and lack a ground-
ing in the common sense and the necessary world
knowledge. These datasets predominantly empha-
size arithmetic reasoning using SQL in structured
formats, overlooking the nuanced semi-structured
Infobox-style tables rich in common sense.

Temporal Datasets and Models. Several tem-
poral question answering datasets have been intro-
duced recently. These include TIME-SENSITIVE-
QA (Chen et al., 2021c) and TORQUE (Ning et al.,
2020), which are entity-specific reading compre-
hension datasets with time-sensitive questions de-
rived from Wikipedia paragraphs. TEMPQA-WD
(Neelam et al., 2022), CRONQUESTIONS (Saxena
et al., 2021), and TEMPQUESTIONS (Jia et al.,
2018a) are question answering datasets focusing on
knowledge graph embeddings with temporal links.
Additionally, there are open-domain (Zhang and

Choi, 2021) and cloze-form (Dhingra et al., 2022)
question answering tasks, as well as event-centric
datasets (Ning et al., 2018; Wen et al., 2021; Chen
et al., 2021a) that explore temporal QA.

In terms of modeling, there are temporally tuned
language models trained on knowledge-based ques-
tion answering datasets such as CRONKBQA (Sax-
ena et al., 2021), TEQUILA (Jia et al., 2018b),
EXAQT (Jia et al., 2021a), OTR-QA (Shang et al.,
2021), and TEMPOQR (Mavromatis et al., 2021),
among others. (Kannen et al., 2022) suggest a
targeted approach to extract temporal facts when
traditional KBQA methods fail to retrieve them
from the knowledge base. Some methods incor-
porate temporal aspects during masked language
model pre-training (Dhingra et al., 2022; Iv et al.,
2022), rather than fine-tuning on downstream NLI
tasks. In comparison to prior work, TEMPTABQA
focuses on temporal question answering specifi-
cally on entity-centric tables, while most existing
studies address non-tabular datasets.

7 Conclusion

In conclusion, this study addresses the effectiveness
of current NLP systems in reasoning about tem-
poral information in semi-structured data, specif-
ically Infobox tables. We introduce the task of
temporal question answering on semi-structured
tables and present the TEMPTABQA dataset, con-
sisting of 11,454 question-answer pairs from 1,208
Wikipedia Infobox tables across varied domains.
Evaluating state-of-the-art models on this dataset
reveals significant gaps compared to human perfor-
mance, exceeding 13.5 F1 points. These findings
emphasize the need for advancements in temporal
reasoning capabilities of NLP models. The TEMPT-
ABQA dataset serves as a challenging benchmark
to enhance temporal reasoning in NLP models.

Future Directions. From our analysis, we sug-
gest future avenues in temporal query answering:
(a) Diverse Structures: Expand temporal queries
to various table structures, like hybrid composi-
tions (text, table, image). (b) Dynamic Queries:
Examine evolving tables across a consistent time-
line. (c) Open Domain Queries: Merge retrieval,
extraction, understanding, and temporal reasoning
into one framework. (d) Reasoning with LLMs:
Tailor large language models (LLMs) for table-
specific temporal logic, with more on this in Ap-
pendix H. Advanced prompts remain a potential
area of exploration.



Limitations

First, it focuses solely on entity-centric tables from
Wikipedia, excluding non-Infobox tables and other
relevant sources. Exploring a broader range of table
types would be valuable. Second, despite our ef-
forts to ensure unbiased table selection and dataset
annotation, inadvertent bias leakage is possible,
potentially affecting results.

Third, due to limited computational capacity,
we could only fine-tune models using large sizes
(XL), not extra-large (XXL). One idea that could
be explore here is using Parameter Efficient Fine
tuning (PEFT) (Mangrulkar et al., 2022). Incorpo-
rating more open-source Language Models (LLMs)
would enhance our understanding of temporal rea-
soning capabilities. Lastly, our work primarily tar-
gets the English language, while exploring multi-
lingual settings would increase applicability and
generalizability. These limitations present oppor-
tunities for future research and expansion in this
field.
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A Analysis Breakdown: GPT-3.5 model

GPT-3.5 Model: Table 16, 17, 18, 19, 20, 21
represent analysis of GPT-3.5 on various aspects
such as question type, reasoning operation, explicit
and implicit , entity type and category wise (tail
and head), respectively.

B Analysis Breakdown: GPT-4 vs Human

GPT-4 vs. Human: Table 22, 23, 24, 25 rep-
resent analysis of GPT-4 and Human on various
aspects such as question type, reasoning operation,
explicit and implicit , entity type.

We also consider what the performance of model
as comapred to Human on examples on particular
table/article domain. We consider coarse grained
categories for comparison. Table 26, 27 and 28,
29 shows the model head and tail set performance
based on table domains for coarse and fine-gained
setting.

Type # F1 EM R1 R2 MET

Head
what 470 59.34 57.87 59.43 59.37 40.92
where 22 88.41 86.36 89.81 89.81 65.5
who 80 61.59 58.75 61.68 61.68 55.28
when 263 69.51 68.06 69.42 69.39 49.79
quantity 588 58.88 56.97 58.91 58.91 45.22
how 152 50.02 48.03 50.36 50.36 46.65

Tail
what 326 55.67 54.29 56.54 56.42 38.18
where 12 55.26 50.0 55.25 55.25 47.56
who 44 36.31 31.82 36.39 36.39 35.96
when 101 66.12 64.36 66.11 66.11 50.25
quantity 378 57.29 55.29 57.4 57.33 39.76
how 105 56.87 55.24 56.99 56.99 47.83

Table 16: Performance w.r.t Question Type with GPT-3.5 few
shots (with chain of thought prompting).

Op. F1 EM R1 R2 MET

Head
max 68.74 67.42 68.69 68.69 48.89
min 55.78 53.92 56.19 56.15 47.53
count 61.11 59.3 61.1 61.1 45.64
sum 36.02 34.09 36.22 36.22 25.59
avg. 100.0 100.0 100.0 100.0 93.75
dif. 45.44 43.75 45.62 45.62 41.15
com. 48.48 47.62 48.64 48.64 35.19

Tail
max 66.18 64.29 66.81 66.81 47.93
min 52.32 50.0 52.52 52.52 38.45
count 59.74 57.87 59.79 59.72 40.61
sum 43.48 39.47 43.71 43.52 32.36
avg. 34.33 25.0 34.58 33.33 39.66
dif. 56.8 54.55 57.4 57.4 51.08
com. 54.99 53.85 54.83 54.83 35.46

Table 17: Performance w.r.t Reasoning Operation with GPT-
3.5 few shots (with chain of thought prompting).

Domain # EM Domain # EM

person 66 59.09 sports 717 56.49
cricket team 18 61.11 history 27 33.33
aircraft 24 66.67 fighter 9 33.33
finance 31 41.94 court 21 71.43
musician 42 59.52 art 30 83.33
nobel 39 56.41 country 9 44.44
space 51 49.02 railway 15 80.0
company 21 52.38 website 3 33.33
university 18 72.22 monument 27 77.78
event 5 40.0 book 15 86.67
church 15 60.0 leaders 27 66.67
office holders 27 48.15 music 22 77.27
war 34 38.24 conflicts 14 14.29
concert 27 62.96 disaster 18 55.56
song 18 77.78 movie 24 66.67
rail line 5 60.0 character 27 70.37
ships 15 53.33 agency 16 75.0
board game 48 75.0 NFT 18 66.67
NCT 18 72.22

Table 18: Head Set coarse-gained category-Wise Results
with GPT-3.5 few-shot (with Chain of Thought).
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Type F1 EM R1 R2 MET

Head
exp. 59.44 56.99 0.6 59.57 48.24
imp. 61.08 59.72 0.61 61.1 44.16

Tail
exp. 52.50 50.0 0.53 52.81 38.64
imp. 58.51 56.85 0.59 58.76 42.05

Table 19: Performance w.r.t Implicit/Explicit Type with GPT-
3.5 few shots (with chain of thought prompting).

Type # F1 EM R1 R2 MET

Head
Temporal 736 65.44 63.32 65.49 65.47 55.4
Count 341 55.91 55.13 55.93 55.93 30.0
Age 133 45.13 43.61 45.09 45.05 24.25
Money 17 55.38 52.94 56.25 56.25 54.36
Percentage 8 6.13 0.0 5.36 5.36 6.95
Ordinal 6 33.33 33.33 33.33 33.33 20.14
Place 47 69.68 68.09 70.28 70.28 45.74
Person 76 64.37 61.84 64.52 64.52 57.88
Organization 69 62.13 60.87 62.28 62.08 52.49
Product 2 100.0 100.0 100.0 100.0 71.88
Unknown 146 58.78 56.85 59.05 59.0 44.66
Boolean 2 50.0 50.0 50.0 50.0 25.0

Tail
Temporal 412 58.38 55.34 58.56 58.47 52.04
Count 245 58.35 57.96 58.45 58.37 30.32
Age 84 61.37 60.71 61.54 61.47 31.92
Money 3 69.84 66.67 72.46 72.46 65.83
Percentage 6 35.0 33.33 37.19 37.19 20.61
Ordinal 1 0.0 0.0 0.0 0.0 0.0
Place 24 64.04 62.5 63.89 63.89 41.34
Person 43 34.82 30.23 34.91 34.91 34.62
Organization 43 44.85 44.19 47.85 47.85 28.17
Product 7 85.71 85.71 85.71 85.71 42.86
Unknown 107 54.49 53.27 55.24 55.17 39.14
Boolean 7 51.03 42.86 51.37 50.27 32.66

Table 20: Performance w.r.t Entity Type with GPT-3.5 few
shots (with chain of thought prompting).

Domain # EM Domain # EM

sports 500 61.2 party 72 52.78
time zone 15 53.33 holiday 96 40.62
ships 75 57.33 aircraft 6 50.0
organization 6 66.67 disaster 36 41.67
war 63 49.21 army 75 42.67
planet 6 50.0 diseases 32 50.0

Table 21: Tail set coarse-gained category-Wise Results with
GPT-3.5 few-shot (with Chain of Thought).

C Models and Hyperparameters Details

In our research, we embarked on a series of training
experiments utilizing several models such as BART,
Flan-T5, and T5, each with base, large, and XL
variants. Training was conducted over 1-3 epochs,
incorporating input sequence lengths from 1024
to 4096 tokens. To foster efficient convergence,

Type Tail Domain
Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4

F1 R1 R2 MET

Head Set
what 88.48 72.46 88.43 72.6 88.3 72.5 59.13 50.57
where 95.95 92.12 95.86 93.42 95.86 93.42 67.45 69.17
who 91.74 67.47 91.61 67.31 91.61 67.31 78.64 60.99
when 91.56 76.03 91.56 75.97 91.37 75.97 59.84 53.06
quantity 82.24 72.71 81.6 72.7 81.6 72.66 49.05 53.58
how 86.93 64.84 87.45 65.06 87.45 65.01 74.93 59.31

Tail Set
what 88.17 65.91 88.21 67.02 88.14 66.82 55.98 45.32
where 83.33 55.28 83.33 55.45 83.33 55.45 56.62 47.0
who 75.66 40.08 75.66 40.45 75.66 40.23 67.12 40.22
when 93.12 71.28 93.12 71.25 93.12 71.25 65.38 55.12
quantity 84.39 69.43 84.51 69.55 84.51 69.51 48.11 47.19
how 85.41 67.46 85.41 67.78 85.41 67.78 73.16 59.07

Table 22: Comparison between Human and GPT-4 w.r.t.
question type
Op. Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4

F1 R1 R2 MET

Head Set
max 95.51 80.92 95.51 80.91 95.51 80.84 61.62 57.11
min 88.24 70.74 88.24 70.87 88.24 70.66 68.4 59.58
count 82.25 75.27 81.63 75.22 81.63 75.19 47.29 54.05
sum 78.08 54.33 75.81 54.32 75.81 54.18 43.1 36.88
avg. 100.0 100.0 100.0 100.0 100.0 100.0 93.75 93.75
dif. 71.25 46.63 71.25 46.41 71.25 46.41 54.87 39.42
com. 80.95 70.18 82.14 71.24 82.14 71.24 54.37 48.13

Tail Set
max 86.07 70.83 86.96 71.23 86.96 71.23 52.4 49.29
min 91.73 74.51 92.78 74.63 92.78 74.63 62.17 53.76
count 85.47 72.03 85.59 72.12 85.59 72.07 47.58 48.36
sum 81.35 46.31 83.47 46.87 83.47 46.68 44.0 33.66
avg. 50.0 58.25 50.0 61.23 50.0 59.31 35.94 60.86
def. 83.94 57.49 87.58 58.06 87.58 58.06 64.43 53.37
com. 76.92 56.23 76.92 55.98 76.92 55.98 43.75 37.23

Table 23: Comparison between Human and GPT-4 w.r.t.
reasoning operations.

Type Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4
F1 R1 R2 MET

Head Set
explicit 87.47 71.37 86.8 71.4 86.71 71.33 61.25 55.81
implicit 86.12 73.16 86.16 73.23 86.1 73.19 56.16 52.64

Tail Set
explicit 81.65 60.3 82.09 61.02 82.0 60.85 53.43 44.61
implicit 87.87 69.49 87.77 69.86 87.77 69.79 56.93 49.68

Table 24: Comparison between Human and GPT-4 w.r.t. type
of temporal question

we introduced a warm-up period of 500 steps and
applied weight decay at a rate of 0.01 during the
optimization phase. We implemented logging and
evaluation at every 100-step interval. The learning
rate was designated at 2e-5, and a gradient accu-
mulation process of 8 steps was used to optimize
memory resources.

Our study further expanded to encompass zero-
shot and few-shot experiments. This included, but
was not limited to, chain-of-thought prompting on
cutting-edge models like GPT-3.5 and GPT-4. We
delved into various variants of Flan-T5 and T5 mod-
els, such as large L, XL, and XXL. A thorough anal-
ysis was undertaken to compare the performance
of these models against human performance bench-
marks.



Type Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4
F1 R1 R2 MET

Head Set
Boolean 100.0 50.0 100.0 50.0 100.0 50.0 25.0 31.1
Temporal 86.74 72.4 86.98 72.46 86.91 72.43 61.16 60.22
Count 83.87 76.17 82.7 76.04 82.7 76.02 40.33 39.27
Age 84.91 58.21 84.91 58.21 84.91 58.17 30.99 30.97
Money 85.29 66.9 85.29 66.66 85.29 66.66 65.26 65.64
Percentage 62.5 45.19 62.5 45.72 62.5 45.72 36.42 21.33
Ordinal 66.67 50.0 66.67 50.0 66.67 50.0 28.33 0.0
Place 97.87 87.8 97.87 88.41 97.87 88.41 60.45 40.67
Person 92.62 68.9 92.49 68.81 92.49 68.81 62.32 38.98
Organization 91.79 84.24 91.79 84.23 90.92 84.1 70.5 39.68
Product 100.0 100.0 100.0 100.0 100.0 100.0 71.88 57.09
Unknown 86.51 72.16 85.82 72.62 85.82 72.43 55.2 46.58

Tail Set
Boolean 57.14 52.44 57.14 54.62 57.14 53.52 28.57 31.1
Temporal 85.52 67.43 85.61 67.63 85.55 67.52 63.4 60.22
Count 87.1 75.92 87.47 76.04 87.47 75.97 44.2 39.27
Age 91.96 60.57 91.93 60.75 91.93 60.67 45.95 30.97
Money 80.0 69.44 93.33 71.6 93.33 71.6 68.25 65.64
Percentage 23.33 35.71 22.22 37.25 22.22 37.25 8.33 21.33
Ordinal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Place 87.5 63.75 87.5 63.64 87.5 63.64 53.05 40.67
Person 75.09 38.69 75.09 39.07 75.09 38.84 65.4 38.98
Organization 95.35 61.46 95.35 66.6 95.35 66.6 61.21 39.68
Product 100.0 100.0 100.0 100.0 100.0 100.0 50.0 57.09
Unknown 86.38 62.89 85.48 63.6 85.48 63.48 61.06 46.58

Table 25: Comparison between Human and GPT-4 w.r.t.
entity type

Type Head Domain
Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4

F1 R1 R2 MET

agency 73.96 77.75 73.96 77.94 73.96 77.94 55.64 77.07
aircraft 89.58 76.61 85.42 76.32 85.42 76.32 57.7 58.45
art 100.0 93.33 100.0 93.33 100.0 93.33 62.59 59.4
board game 89.58 93.54 89.58 93.42 89.58 93.42 61.52 67.91
book 83.33 94.07 83.33 94.04 83.33 94.04 58.21 65.41
character 92.59 88.89 92.59 88.89 92.59 88.89 61.08 60.85
church 85.93 71.9 85.93 71.71 85.93 71.71 64.87 59.57
company 92.38 79.05 92.38 78.75 92.38 78.75 69.28 62.31
concert 88.89 89.42 88.89 89.38 88.89 89.38 69.56 68.52
country 81.48 78.74 81.48 78.63 81.48 78.63 54.93 75.45
court 87.62 86.19 87.62 86.17 87.62 86.17 68.68 70.67
cricket team 76.67 84.81 76.67 84.81 76.67 84.81 50.18 72.5
disaster 88.38 85.48 82.72 84.81 79.94 84.81 57.96 65.34
event 100.0 62.35 100.0 62.22 100.0 62.22 77.42 49.17
fighter 44.44 54.06 44.44 53.29 44.44 53.29 24.85 32.35
finance 77.42 54.21 77.42 53.97 77.42 53.97 52.96 40.33
history 82.96 50.48 82.96 51.09 82.96 51.09 58.15 36.8
leaders 85.93 61.59 85.93 61.65 85.93 61.49 63.95 51.06
military conflicts 88.57 65.13 81.43 64.29 81.43 64.29 46.77 41.83
monument 83.33 77.69 83.33 77.92 83.33 77.92 64.91 61.82
movie 72.92 68.06 72.92 68.55 72.92 68.55 47.58 46.46
music 100.0 68.18 100.0 68.18 100.0 68.18 72.74 48.68
musician 83.33 75.87 83.33 75.82 83.33 75.82 64.59 58.96
unknown 95.45 78.02 95.0 77.95 95.0 77.95 69.8 65.72
national cricket team 88.33 84.58 88.33 84.44 88.33 84.44 68.62 68.02
national football team 86.11 83.33 86.11 83.33 86.11 83.33 48.26 50.07
nobel 82.05 78.3 82.05 78.26 82.05 78.26 55.89 57.54
office holders 87.04 62.5 87.04 62.83 87.04 62.58 63.13 54.76
person 90.91 59.57 90.91 59.64 90.91 59.64 57.48 40.77
rail line 100.0 80.0 100.0 80.0 100.0 80.0 79.68 69.68
railway 93.33 87.69 93.33 87.62 93.33 87.62 77.3 75.52
ships 82.22 66.44 84.13 67.26 84.13 67.26 66.04 63.73
song 83.33 72.53 83.33 73.21 83.33 72.72 64.92 54.83
space 81.04 52.67 81.82 52.93 81.82 52.65 58.84 43.72
sports 86.66 71.34 86.81 71.45 86.73 71.41 54.93 51.29
university 100.0 76.1 88.89 74.77 88.89 74.27 54.51 53.94
war 86.47 61.99 86.47 62.51 86.47 62.51 56.02 41.8
website 100.0 100.0 100.0 100.0 100.0 100.0 79.17 79.17

Table 26: Comparison between Human and GPT-4 w.r.t.
coarse-grained categories for Head Set

Flan-T5 is an instruction fine-tuned derivative
of the T5 language model, purposefully crafted
to excel in a wide array of natural language pro-
cessing tasks. These tasks include, among oth-
ers, text generation, summarization, and transla-
tion. With the integration of instruction-based fine-
tuning, Flan-T5 boosts its competency in handling
zero-shot NLP tasks while also facilitating few-
shot in-context learning. Thanks to its advanced
encoder-decoder architecture and attention mech-

Type Head Domain
Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4

F1 R1 R2 MET

actor 90.48 81.27 90.48 81.27 90.48 81.27 55.65 53.9
agency 73.96 77.75 73.96 77.94 73.96 77.94 55.64 77.07
aircraft 89.58 76.61 85.42 76.32 85.42 76.32 57.7 58.45
album 100.0 53.85 100.0 53.85 100.0 53.85 71.32 34.44
athelete 86.11 76.21 86.11 75.97 86.11 75.97 48.16 47.89
badminton 88.89 67.37 88.89 67.76 88.89 67.76 50.28 45.32
baseball 90.74 76.42 90.74 76.76 90.74 76.76 63.68 60.2
basketball 92.22 80.1 91.98 80.12 91.98 80.12 69.02 69.65
board game 96.3 97.62 96.3 97.49 96.3 97.49 66.17 72.07
body builder 88.75 70.63 88.75 70.78 88.75 70.5 64.75 58.99
book 83.33 94.07 83.33 94.04 83.33 94.04 58.21 65.41
car driver 76.19 67.92 76.19 67.99 76.19 67.85 47.68 53.96
character 92.59 88.89 92.59 88.89 92.59 88.89 61.08 60.85
christian leader 85.93 61.59 85.93 61.65 85.93 61.49 63.95 51.06
church 85.93 71.9 85.93 71.71 85.93 71.71 64.87 59.57
civil war 87.69 77.51 87.69 78.06 87.69 78.06 53.73 53.56
company 92.38 79.05 92.38 78.75 92.38 78.75 69.28 62.31
concert 88.89 89.42 88.89 89.38 88.89 89.38 69.56 68.52
country 81.48 78.74 81.48 78.63 81.48 78.63 54.93 75.45
court 87.62 86.19 87.62 86.17 87.62 86.17 68.68 70.67
cricket team 76.67 84.81 76.67 84.81 76.67 84.81 50.18 72.5
curling 87.5 64.95 87.5 64.92 87.5 64.92 49.46 45.44
current war 85.71 52.38 85.71 52.88 85.71 52.88 57.44 34.52
earthquake 88.38 85.48 82.72 84.81 79.94 84.81 57.96 65.34
economy 77.42 54.21 77.42 53.97 77.42 53.97 52.96 40.33
emperor 82.96 50.48 82.96 51.09 82.96 51.09 58.15 36.8
empire 95.45 78.02 95.0 77.95 95.0 77.95 69.8 65.72
event 100.0 62.35 100.0 62.22 100.0 62.22 77.42 49.17
fighter 44.44 54.06 44.44 53.29 44.44 53.29 24.85 32.35
figure skating 87.76 64.27 87.76 64.28 87.76 64.28 52.48 43.14
footballer 77.33 43.28 77.33 44.92 77.33 44.92 48.41 30.64
game 80.95 88.3 80.95 88.18 80.95 88.18 55.53 62.56
golf 81.48 51.85 81.48 51.85 81.48 51.85 52.41 39.38
handball 87.18 81.0 87.18 80.95 87.18 80.95 61.21 59.2
ice hockey 87.6 81.62 87.6 82.64 87.6 82.64 55.94 53.43
lacrosse 78.89 77.36 80.97 77.27 80.97 77.27 45.69 52.51
launchpad 56.67 52.26 56.67 52.05 56.67 52.05 43.19 34.6
martial artist 83.64 87.06 85.61 87.61 85.61 87.61 58.94 68.47
military conflicts 88.57 65.13 81.43 64.29 81.43 64.29 46.77 41.83
monument 83.33 77.69 83.33 77.92 83.33 77.92 64.91 61.82
movie 87.5 77.78 87.5 77.38 87.5 77.38 65.99 60.1
music 100.0 88.89 100.0 88.89 100.0 88.89 74.79 69.24
musician 83.33 75.87 83.33 75.82 83.33 75.82 64.59 58.96
national cricket team 88.33 84.58 88.33 84.44 88.33 84.44 68.62 68.02
national football team 86.11 83.33 86.11 83.33 86.11 83.33 48.26 50.07
navy vessel 82.22 66.44 84.13 67.26 84.13 67.26 66.04 63.73
nba 80.0 84.73 80.0 84.67 80.0 84.67 55.93 62.94
nfl 79.17 69.3 79.17 69.33 79.17 69.33 53.52 52.42
nobel 82.05 78.3 82.05 78.26 82.05 78.26 55.89 57.54
office holders 87.04 62.5 87.04 62.83 87.04 62.58 63.13 54.76
painter 100.0 93.33 100.0 93.33 100.0 93.33 62.59 59.4
person 94.87 44.03 94.87 44.15 94.87 44.15 61.06 31.02
politician 66.67 84.67 66.67 84.62 66.67 84.62 40.62 58.19
racing 76.92 66.49 76.92 66.3 76.92 66.3 48.9 47.75
rail line 100.0 80.0 100.0 80.0 100.0 80.0 79.68 69.68
railway 93.33 87.69 93.33 87.62 93.33 87.62 77.3 75.52
rugby 96.3 64.32 96.3 64.47 96.3 64.22 57.87 46.54
sailor 89.29 69.23 89.29 69.18 89.29 69.18 44.64 42.79
scientist 90.37 81.13 90.37 80.92 90.37 80.37 57.24 59.38
show 58.33 58.33 58.33 59.72 58.33 59.72 29.17 32.81
skier 94.44 79.28 94.44 79.23 94.44 79.23 56.94 48.37
song 83.33 72.53 83.33 73.21 83.33 72.72 64.92 54.83
space probe 81.22 53.09 82.7 53.25 82.7 52.71 66.67 48.72
space program 88.89 52.17 88.89 52.74 88.89 52.74 52.33 39.24
stadium 100.0 88.89 100.0 88.89 100.0 88.89 64.58 63.89
swimming 96.77 80.8 96.77 80.62 96.77 80.62 55.87 51.79
table tennis 100.0 73.81 100.0 73.71 100.0 73.71 62.5 47.22
tennis 90.0 61.03 90.0 61.23 90.0 61.23 58.27 42.66
university 100.0 76.1 88.89 74.77 88.89 74.27 54.51 53.94
volleyball 87.5 60.16 87.5 60.0 85.0 60.0 56.3 40.86
website 100.0 100.0 100.0 100.0 100.0 100.0 79.17 79.17
wrestling 81.82 66.18 81.82 66.06 81.82 66.06 55.03 55.25

Table 27: Comparison between Human and GPT-4 w.r.t. fine-
grained categories for Head Set
Type Tail Domain

Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4
F1 R1 R2 MET

aircraft 83.33 70.8 83.33 70.52 83.33 70.52 64.27 55.87
army 77.14 55.91 77.68 56.54 77.68 56.32 55.05 47.01
disaster 74.6 44.12 74.6 44.53 74.6 44.32 49.08 29.99
diseases 67.94 59.37 70.46 59.9 70.46 59.6 42.98 41.08
holiday 76.29 57.37 77.01 57.71 77.01 57.29 48.49 44.26
organization 91.67 71.35 91.67 70.59 91.67 70.59 53.12 70.0
party 86.38 72.89 86.38 73.33 86.38 73.33 62.83 57.61
planet 83.33 83.33 83.33 83.33 83.33 83.33 56.25 56.25
ships 84.69 67.61 84.69 68.24 84.69 68.24 61.13 51.91
sports 91.02 71.96 91.03 72.46 90.98 72.42 55.32 48.08
time zone 87.22 61.85 79.33 62.03 79.33 62.03 64.51 55.11
war 87.94 59.5 87.62 60.01 87.62 59.93 66.19 49.49

Table 28: Comparison between Human and GPT-4 w.r.t.
coarse-grained categories for Tail Set



Type Tail Domain
Human GPT-4 Human GPT-4 Human GPT-4 Human GPT-4

F1 R1 R2 MET

army 77.14 55.91 77.68 56.54 77.68 56.32 55.05 47.01
boxing 88.89 67.97 88.89 67.84 88.89 67.84 59.52 50.04
cricket 89.29 70.29 89.29 70.2 89.29 70.2 53.65 44.37
cycling 95.16 62.79 95.06 65.51 95.06 65.51 55.53 41.64
cyclone 74.6 44.12 74.6 44.53 74.6 44.32 49.08 29.99
disease 67.94 59.37 70.46 59.9 70.46 59.6 42.98 41.08
f1 93.89 75.9 93.89 75.94 93.89 75.94 55.96 50.46
hockey 92.27 72.27 92.27 72.23 92.27 72.23 54.05 44.19
holiday 76.29 57.37 77.01 57.71 77.01 57.29 48.49 44.26
orbitor 83.33 70.8 83.33 70.52 83.33 70.52 64.27 55.87
planet 83.33 83.33 83.33 83.33 83.33 83.33 56.25 56.25
political party 86.38 72.89 86.38 73.33 86.38 73.33 62.83 57.61
proxy war 87.94 59.5 87.62 60.01 87.62 59.93 66.19 49.49
ship 84.69 67.61 84.69 68.24 84.69 68.24 61.13 51.91
sports event 86.35 82.93 86.78 83.02 86.28 82.78 58.24 59.77
squash 87.5 85.11 87.5 85.11 87.5 85.11 50.22 50.49
sumo 88.65 64.12 88.61 64.18 88.61 64.07 58.57 51.88
terrorist orgnization 91.67 71.35 91.67 70.59 91.67 70.59 53.12 70.0
time zone 87.22 61.85 79.33 62.03 79.33 62.03 64.51 55.11

Table 29: Comparison between Human and GPT-4 w.r.t. fine-
grained categories for Tail Set

anisms, Flan-T5 efficiently leverages contextual
information to generate high-quality output. This
capability promotes opportunities for enhanced per-
formance and adaptability across various language
processing applications.

Our study involved fine-tuning the Flan-T5
model across its different variants: Flan-T5-Base,
Flan-T5-Large, and Flan-T5-XL. Alongside this,
we also carried out zero-shot, few-shot (with and
without chain of thought prompting) experiments
on Flan-T5-Large, Flan-T5-XL, and Flan-T5-XXL.

BART (Bidirectional and AutoRegressive Trans-
formers) is a robust sequence-to-sequence model
architecture widely adopted in various natural lan-
guage processing tasks. By fusing bidirectional
and autoregressive training objectives, BART is ca-
pable of exploiting the context of both the input
and target sequences. Given that BART features an
autoregressive decoder, it can be directly fine-tuned
for sequence generation tasks, such as abstractive
question answering.

We fine-tuned the BART-Large model, consist-
ing of 12 encoder-decoder layers with 440 million
parameters, and BART-Base model, comprising 6
encoder-decoder layers and 140 million parameters.
The performance analysis and outcomes of these
fine-tuned models can be found in the main paper.

T5 (Text-To-Text Transfer Transformer) is a
versatile language model architecture. Based on the
transformer model, T5 is equipped to handle vari-
ous natural language processing tasks. By leverag-
ing a "text-to-text" training approach, T5 learns to
transform input text into target text, thus enabling
it to manage a wide variety of tasks. These tasks
include text classification, summarization, trans-
lation, and question answering. The T5 model

incorporates an encoder-decoder structure with
several layers of self-attention mechanisms and
uses a shared vocabulary and tokenization scheme,
thereby ensuring a consistent representation and
efficient processing of text data.

We carried out fine-tuning on different variants
of the T5 model: T5-Base, T5-Large, and T5-XL.
We also conducted zero-shot experiments on T5-
Large, T5-XL, and T5-XXL.

GPT-3.5-turbo and GPT-4 are the latest devel-
opments in the distinguished GPT series of lan-
guage models. GPT-3.5 Turbo is an enhanced vari-
ant of GPT-3, boasting approximately 154 billion
parameters and demonstrating superior language
processing capabilities. It is particularly adept at
text generation, comprehension, summarization,
among other tasks. Conversely, GPT-4 signifies the
next step in language modeling with an expected
model size of around 1 trillion parameters and im-
proved language understanding and generation ca-
pacities. These models rely on vast pretraining
data for superior generalization and exhibit excel-
lent performance in both zero-shot and few-shot
learning scenarios.

We conducted a suite of experiments on GPT-
3.5 Turbo and GPT-4, focusing on zero-shot and
few-shot learning scenarios, examining their per-
formance with and without reasoning capabilities.

Table Representation. Firstly, each table is
transformed from HTML into a JSON represen-
tation, containing subheadings, rows with keys and
their respective values, as well as the table title and
category as distinct keys. We employed a lineariza-
tion process akin to INFOTABS (Gupta et al., 2020),
using delimiters such as "tab" or ":" to separate
keys, and "newline" or ";" for rows. Subsections
are partitioned by double "new lines" or "#". For
instance, in Table 1, the representation is: Title:
Petya Nedelcheva # Personal Information # Coun-
try: Bulgaria; Born: July 30, 1983 (age 38), and
soon.

D Crowdsourcing Details

To construct TEMPTABQA, we divided the task
into 80 batches, each consisting of three question-
answer pair generations per HIT6. We assigned

6A Human Intelligence Task, or HIT, is a question that
needs an answer. A HIT represents a single, self-contained,
virtual task that a Worker can work on, submit an answer, and
collect a reward for completing. HITs are created by Requester
customers in order to be completed by Worker customers.



Dataset Number Gold/total

3 82/91
Dev 4 3/3

5 1/2
Overall 148/166

3 898/1033
Head 4 20/32

5 23/32
Overall 1627/1821

3 386/468
Tail 4 26/33

5 39/49
Overall 999/1155

Table 30: Exact agreement between annotators

each HIT to three distinct annotators, resulting in
an average of 9 QA pairs generated per table. The
wage for each HIT, which involved generating three
question-answer pairs for a given table, was set at
0.75 cents based on the average completion time
observed during three pilot studies.

All our annotators were proficient English speak-
ers from countries where English is spoken. They
possessed master-level qualifications and main-
tained a HIT acceptance rate of 95% and above.
We occasionally rewarded frequent and exceptional
annotators with a bonus of 3 times the cost of the
HIT. To ensure task quality, we implemented tem-
porary blocking and rewarding mechanisms for
annotators.

For verification purposes, each HIT required an-
swering three questions and providing a brief expla-
nation. An annotator received 0.15 cents per HIT
for this task. If consensus was not reached among
the initial three annotators, we reassigned the HIT
to another set of three annotators. Here two we
start with three pilot study to decide the cost of the
annotation. Notably, we observed that the top 50
annotators were responsible for annotating approxi-
mately 90% of the dataset. This observation aligns
with other crowdsourced data annotation projects
such as SNLI and MultiNLI.

Validation Details. We employ straightforward
pre-processing scripts to remove non-temporal and
basic extractive questions from the training set prior
to fine-tuning. For the test and development sets,
we enforce rigorous quality control by manually
reviewing each Table QA, with input from three
experts who are NLP researchers. This process
follows the initial automated script-based filtering
and is aimed at ensuring high-quality complex tem-
poral questions. Additionally, we address answer

units and correct spelling errors during our quality
filtering. We prioritize questions involving intricate
temporal reasoning and abstract concepts while fil-
tering out questions with answers directly present
in the question or associated tables. Questions
that required external knowledge beyond common
sense are also filtered.

Our annotators were directed to offer concise
and pertinent answers. While the majority adhered
to the instructions, a few instances deviated, lead-
ing to occasional ambiguities. These ambiguities
typically emerged when multiple answer forms con-
veyed the same meaning but in different units or
formats, such as ’365 days’ ’12 months’ or ’one
year.’ We ensured our assessment script didn’t pe-
nalize models or human verifiers for unit or format
conversion issues. We established regex rules that
encompassed various forms, and these were further
validated through human verification across numer-
ous samples. Figure 30 shows the exact agreement
between across several annotators.

E More Examples from TEMPTABQA

Figures 2, 3, 4, 5, 6 show some examples of tabular
question answers from TEMPTABQA.

Answering these questions demands from lan-
guage models an understanding of temporal rela-
tionships to correctly connect time frames to per-
tinent events, as well as numerical reasoning to
perform calculations, comparisons, and quantita-
tive analyses based on temporal data. This includes
both basic arithmetic and complex numerical rea-
soning like identifying trends or evaluating numeri-
cal changes over time.

These questions present challenges for language
models due to the multi-faceted nature of the infor-
mation required to answer them. First, they demand
a deep understanding of temporal relationships, en-
compassing the ability to interpret and analyze time
frames accurately. The language model must effec-
tively connect these time frames to specific events,
albums, or other relevant entities mentioned in the
context.

Furthermore, numerical reasoning plays a cru-
cial role in successfully addressing these questions.
The language model needs to perform calculations,
comparisons, and quantitative analysis based on
temporal data to arrive at the correct answers. This
entails not only basic arithmetic operations but also
more sophisticated numerical reasoning, such as
identifying trends, computing durations, or evaluat-



Dataset Temporal Entity Domain Task Hybrid Numerical Synthetic Abstractive

INFOTABS ✗ ✓ Generic NLI ✗ ✓ Human ✓
TABFACT ✗ ✗ Generic NLI ✗ ✓ Human ✓
LOGICQA ✗ ✗ Generic QA ✗ ✓ Machine ✓
FETAQA ✗ ✗ Generic QA ✗ ✓ Machine ✗
FINQA ✗ ✗ Finance QA ✓ ✓ Human ✗
TATQA ✗ ✗ Finance QA ✓ ✓ Human ✗
HYBRIDQA ✗ ✗ Generic QA ✓ ✓ Human ✗
WIKITABLEQA ✗ ✗ Generic QA ✗ ✗ Human ✗
SQUALL ✗ ✗ Generic QA ✗ ✗ Human ✓
WIKISQL ✗ ✗ Generic QA ✗ ✗ Human ✓
SQA ✗ ✗ Generic QA ✗ ✓ Human ✓
TEMPTABQA ✓ ✓ Generic QA ✗ ✓ Human ✓

Table 31: Comparison of TEMPTABQA with existing standard Tabular Datasets.

Statistic WIKITABLEQA HYBRIDQA SQA FINQA TABFACT FETAQA SQUALL

# temporal 7807 33713 4634 6774 11219 5978 3876
temporal (%) 35.46 48.43 26.40 82.48 37.69 57.87 34.37

Question Types

explicit 5830 28441 2899 6719 10797 5657 2901
implicit 1977 5272 1735 55 422 321 975
ordinal 1433 5267 276 149 107 510 754

Temporal Interval

before 1006 1156 87 70 173 109 539
after 524 893 55 159 41 83 259
duration 1249 2520 391 1070 2218 562 567
yes/no 86 6 10 103 9 91 65
temporal 1783 8588 1845 52 1605 4681 526

Operation Involved

max 531 1735 185 78 119 115 274
min 597 1272 198 344 219 352 294
count 2313 5789 273 223 597 706 1109
sum 619 965 128 1960 1954 254 316
difference 249 225 23 2390 4149 60 127
average 124 391 33 1788 2633 38 41
comparison 470 697 184 126 834 38 222

Table 32: Statistics of temporal question present in the existing tabular datasets. Most of the question are explicit and involve
only numerical reasoning.

ing numerical changes over time.

F Further Discussion

Key Findings. Based on our experimental anal-
ysis in §4, we conclude that even state-of-the-art
large language models like GPT-4 struggle with
temporal question answering on entity-centric ta-
bles within TEMPTABQA, despite humans’ high
performance. Fine-tuning and few-shot learning
techniques have a positive impact on the model’s
performance. The model encounters more difficul-
ties in the tail domain, comprising rare occurrences,
compared to the head domain with more frequent
instances. Techniques involving step-by-step ex-
planations, such as chain of thought prompting,
further enhance the model’s performance.

In our breakdown in §5, we discovered inconsis-
tent performance of the model and humans across

various question types, answer entity types, rea-
soning operations, answer positions, and table do-
mains. Both the model and humans demonstrate
varying levels of proficiency across different cate-
gories. The analysis helps identify weaknesses and
areas for improvement in future temporal reasoning
models on semi-structured tabular data.

Semi-structured Tables. Semi-structured data
lies in a realm between raw, unstructured text and
rigidly structured content such as Knowledge Gr-
pah. This data landscape, where structured frame-
works interweave with free-form text, spans the
gamut from extensive verbosity like web pages,
to succinct instances such as fact sheets, informa-
tion tables, and technical specifications. Unlike
databases, this type of data isn’t uniformly struc-
tured; it can be a heterogeneous assortment without
preset schemas. Adding to the complexity, explana-



Q1: What was Verisign’s operating income the year the num-
ber of employees reached 904? A1: 886 million

Q2: Is net income of Verisign, Inc. was reduced in 2021
compared to 2020? A2: Yes

Q3: How long did it take for Verisign to reach over 900
employees? A3: 26 years

Q4: Who was the CEO in 1995? A4: James Bidzos

Figure 2: A semi-structured table (source: Wikipedia) along
with accompanying temporal questions and their respective
answers form TEMPTABQA.

tory text that imparts context isn’t always at hand.
Nonetheless, we frequently deduce insights from
such diverse and incomplete data, bridging infor-
mation gaps based on our expectations about rela-
tionships within.

Reasoning Requirements. Navigating semi-
structured information necessitates a broad range
of reasoning skills. We’re tasked with compre-
hending a makeshift layout composed of elements
like text snippets, form fields, or even sub struc-
tured components like lists. Querying this data
calls for various levels of inference, ranging from
straightforward lookups e.g. in Figure 1 query-
ing Petya born place, to lexical deductions, such
as understanding in same table single (WS) and
double game (WD) format, junior championship
vs. senior events of badminton, to grasping the
nature of content within cells, the structure of the
various events, the tournament names, tournament
years and places, the total and specific medals tally,
and the tournament types. Additionally, we might
find ourselves aggregating insights across multi-
ple rows, such as understanding that Dressage is a
non-contact sport in which both genders compete,
or even conducting intricate reasoning that melds
temporal details with general knowledge.

Similarity with Knowledge Graph. However,
it’s important to note that Infoboxes exhibit a high
degree of similarity with standard knowledge bases,
particularly when compared to Wikidata. Wikidata
generally surpasses Infoboxes in terms of compre-
hensiveness. When contrasting Wikidata with the

Q1: How many singles were released in the same year Death
Magnetic was released? A1: 2

Q2: How many months did it take for Metallica to record
Death Magnetic? A2: 14 Months

Q3: How many years after Death Magnetic did Metallica
record another studio album? A3: 8 years

Q4: How many singles were released on the Death Magnetic
album in 2008-2009? A4: 3

Figure 3: A semi-structured table (source: Wikipedia) along
with accompanying temporal questions and their respective
answers form TEMPTABQA.

Infobox style, we observe significant distinctions
in how information is structured. Wikidata adopts
a more organized and structured approach, resem-
bling a knowledge graph. For example, when deal-
ing with a person’s birth details, Wikidata neatly
separates the information into distinct categories
like "birth date," "birth place," and "birth name."
In semi-structured Infoboxes , on the other hand,
these details are often combined under a single
heading, such as "Born." Furthermore, there is a
noticeable contrast in how relationships are pre-
sented. In Wikidata, relationships are systemati-
cally categorized. For instance, instead of using
a generic "spouse" label, Wikidata provides sep-
arate entries for "husband" and "wife," resulting
in a more precise representation. In contrast, an
Infobox might consolidate such information un-
der a single "spouse" entry without specifying the
gender.

From a Temporal Perspective Temporal details
find distinct treatment as well. Wikidata distinctly
separates "start date" and "end date," yielding pre-
cise timeline information. This stands in contrast to
Infoboxes , where these details could be condensed
into single terms like "service," potentially necessi-
tating further interpretation. Wikidata’s penchant
for hierarchy is evident in how complex terms are



Q1: Who was the Prince of Serbia in 1857 before Miloš
Obrenović I? A1: Alexander Karad̄ord̄ević

Q2: How many years before his death did Miloš Obrenović
I begin his second reign as the Prince of Serbia? A2: 2
years

Q3: How long after Miloš Obrenović ’s reign as Grand Vožd
of Serbia ended did his second reign as Prince of Serbia
begin? A3: 41 years

Q4: How many years elapsed between reigns of Prince of
Serbia for Miloš Obrenović I? A4: 19 years

Q5: Who was the Prince of Serbia in 1840? A: Milan II

Figure 4: A semi-structured table (source: Wikipedia) along
with accompanying temporal questions and their respective
answers form TEMPTABQA.

broken down. For instance, a "government official"
could be subcategorized as "president," "prime min-
ister," and more. In contrast, Infoboxes might lack
this hierarchical clarity, opting for more gener-
alized terms. Granular attributes shine in Wiki-
data, with individual specifications for attributes
like "awards," enabling a detailed breakdown of
accolades. Conversely, Infoboxes could consol-
idate these attributes, obscuring the specifics of
received awards. When it comes to event descrip-
tions, Wikidata adopts a distinction between "start
time" and "end time," leading to lucid event elu-
cidations. In Infoboxes , these might be captured
by a singular term, potentially devoid of tempo-
ral context. Lastly, Wikidata’s categorization of
properties imparts a structured approach to data.

Q1: What award did Billard receive the same year she was
Nominated as Member of SATW? A1: Nominated for
Outstanding Women in Academics SNSF

Q2: What award did Aude Gemma Billard get when she was
44 years old? A2: King-Sun Fu Best Transactions Paper
Award

Q3: How many years are between Billard’s award for The
Outstanding Young Person in Science and Innovation
and Innovative Teaching Grant? A3: 2 years

Q4: How many years ago did Aude Gemma Billard was got
award for Fellowship Medicus Foundation? A4: 23
Years ago (1999)

Figure 5: A semi-structured table (source: Wikipedia) along
with accompanying temporal questions and their respective
answers form TEMPTABQA.

In contrast, Infoboxes may not adhere to a simi-
lar systematic categorization, potentially leading to
ambiguity. Collectively, these instances highlight
the structured nature of Wikidata in contrast to the
more succinct, semi-structured implicit knowledge
of Infoboxes .

Entity Table conversion−−−−−−−→ Knowledge Graph. As
Infoboxes are highly structured (compared to Web
tables), we could translate them to Wikidata and ap-
ply existing datasets and algorithms. Despite, this
approach holds some promise, it’s worth noting that
transforming them into a clean and fully structured
Wikidata format is in itself a challenging task, as
highlighted earlier. Nevertheless, it presents an in-
teresting opportunity to explore the capabilities of
state-of-the-art language models in achieving this
conversion. However, it’s important to acknowl-
edge that tables not found on Wikipedia, such as
those containing e-commerce attribute values, re-
search grants, medical reports, financial company
data, etc., pose their own challenges when it comes
to transitioning them into structured knowledge
formats like Wikidata.



Q1: When was the most recent time that Roy Emerson won
the Australian Open? A1: 1969

Q2: How long did Roy Emerson play in the amateur league
before going professional? A2: 15 years

Q3: How old was Roy Emerson when he retired from play-
ing professionally? A3: 47 years old

Q4: What year was Roy Emerson inducted into the Interna-
tional Tennis Hall of Fame? A4: 1982

Q5: Which Grand Slam tournament did Emerson win the
2nd time he won the Davis Cup team competition? A5:
French Open

Figure 6: A semi-structured table (source: Wikipedia) along
with accompanying temporal questions and their respective
answers form TEMPTABQA.

G Table Representation for LLMs

We experimented with three prompts, each fea-
turing detailed instructions similar to those given
to human verifiers. These prompts were based
on three distinct table representations using dif-
ferent delimiters. Our selection process involved
choosing the prompt that yielded the best perfor-
mance. We present the table input in a linear format,
akin to the approach adopted in TABFACT (Chen
et al., 2020b) and INFOTABS (Gupta et al., 2020).
Here, we employ a distinctive denominator token
to demarcate rows using ";" and columns using
":". We also explored alternative delimiters such as
"|" and "#" as well, the performance was similar.

We also experimented with an approach involv-
ing attempted table-to-paragraph conversion, but it
caused models to include unwanted external infor-
mation. LLM parametric knowledge lead to out of
table unwanted hallucination in the paragraph. The
performance variation across these representations
were marginal <1% in the F1-score, and <0.75%
in the exact match.

H Future Directions: Other Modeling
Techniques

Based on our observations and discussions, we
have identified several promising future directions
for enhancing models performance on TEMPT-
ABQA:

1. LLM Pre-trained with Temporal Knowl-
edge: Explore techniques incorporating tem-
poral aspects during pre-training for masked
language models (e.g., Dhingra et al. (2022);
Iv et al. (2022)). Assess their performance in
temporal tabular tasks using auxiliary tasks
from temporal question-answering datasets in
open domains (Jia et al., 2021b), cloze-form,
or event-centric settings (Dhingra et al., 2022;
Chen et al., 2021a; Ning et al., 2018; Wen
et al., 2021).

2. Temporal-Aligned Models for Entity-
Centric Tabular Data: Utilize temporally
tuned language models (e.g., TEQUILA,
EXAQT, OTR-QA, TempoQR) on tempo-
ral knowledge-based question-answering
datasets (e.g., CRONQUESTIONS (Saxena
et al., 2021), TEMPQA-WD (Neelam et al.,
2022)) for answering questions related to
temporal events (Jia et al., 2018a,b; Shang
et al., 2021; Mavromatis et al., 2021; Saxena
et al., 2021; Neelam et al., 2022).

3. Integrating External Temporal Knowl-
edge: Incorporate knowledge base question-
answering datasets like CRONKBQA(Saxena
et al., 2021), nto LLM models during pre-
training (e.g., ERNIE (Zhang et al., 2019),
WKLM, KECP, ERICA, DKPLM) or struc-
tural adaptation (e.g., ERNIE-THU, Know-
Bert, EaE, JAKET). Explore the use of
non-entity temporal relations (e.g., ERICA,
KEPLER, DKPLM, KP-PLM) through pre-
training objectives or structural adaptation
methods (e.g., FaE, K-adapter, KB-adapter,



KLMO, KERM, JointLK, GreaseLM, JAKET,
KnowPrompt, OntoPrompt) as described in
detail in (Hu et al., 2023).

4. Fine-Tuning on Other Temporal Knowl-
edge: Investigate benefits of training on syn-
thetic and counterfactual temporal data (im-
plicit knowledge addition) to enhance model
performance, similar to AUTOTNLI (Kumar
et al., 2022) and (Eisenschlos et al., 2020).
Consider using simple temporal data from un-
structured text sources like Time-Sensitive-
QA (Chen et al., 2021c) and CogCompTime
(Ning et al., 2018), or structured text datasets
like TempQA-WD, CronQUESTIONS, and
TempQuestions (Saxena et al., 2021; Neelam
et al., 2022; Jia et al., 2018b; Shang et al.,
2021), which feature question-answering over
knowledge graph embeddings with temporal
links.


